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Historical notes

It is widely believed that the first paper on quantum neural
networks was

S. Kal, 1995

S.Kak. On quantum neural computing. Inf. Sci. 83(1995)143-160,

However

V. Chavchanidze, 1970

On spatial-temporal quantum-wave processes in neural networks.
Soobshch. AN Gruzinskoi SSR 59(1)(1970)37-40 [in Russian]
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From quantum simmulators to neural networks
R.Reynman. Simulating physics with computers. Int. J.Theor.Phys. 21(1982)467

L.Behera, I.Kar, A.Elitzur. A recurent quantum neural network
model to describe eye tracking of moving targets. Found. Phys.

Lett. 18 (2005) 357:
A target movement can be simulated by brain using the wave-packet
described by Schrödinger equation

ı~
∂Ψ(t, x)

∂t
= − ~

2

2m
∆Ψ(t, x) + V (t, x)Ψ(t, x)

with adjustable potential V (t, x) =
∑

i Wi(t, x) exp((ν(t) − gi )
2).

The squared modulus of the solution gives the probability to find
the (image of ) target in certain domain: f (t, x) = |Ψ(t, x)|2.
This idea was latter generalized to multi-agent games:
V.G. Ivanceic and D.J. Reid. Dynamics of confined crowds mod-
elled using Entropic Stochastic Resonance and Quantum Neural
Networks. Int. J. Intell. Def. Supp. Sys. 2(2009)269
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Multi-agent system
Ivancevic & Reid. Int. J. Def. Supp. Sys. 2(2009)269

ı
∂ψi (t, x)

∂t
= −D[ψ]

∂2ψi

∂x2
+ VUi [ψ]ψi (t, x)

where D[ψ] is nonlinear diffusion coefficient, and
Ui [ψ] = |ψi (t, x)|2 is the p.d.f. of the i -th type agent.

V (t, x , ω) =

n
∑

i=1

ωigi (x)

self-learning potential Learning rule:

ω̇i = −ωi + cH max
x ,k 6=l

|ψk(t, x)|gi (x)|ψl (t, x)|

Local basic potentials are:

gi (x) =
1√
2πσi

e
− (x−x̄i )

2

2σ2
i , x̄i =

∫

M
ψ̄i (t, x)xψi (t, x)dx

∫

M
ψ̄i (t, x)ψi (t, x)dx

.
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System with two types of agents

ı
∂ψB (t, x)

∂t
= −aB

2
|ψR |2

∂2ψB

∂x2

+ V |ψB |2ψB(t, x),

ı
∂ψR(t, x)

∂t
= −aR

2
|ψB |2

∂2ψR

∂x2

+ V |ψR |2ψR(t, x),

ω̇i = −ωi

+ cH max
x

|ψR |gi |ψB |,

i = B ,R

128 × 128 grid
(σx , σy ) = (0.38, 0.50),

aB = aR = 0.1, cH = 0.05

T = 0, 0.6
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Pictures from:
M.Altaisky, N.Kaputkina, V.Krylov.
Phys. Part. Nuclei. 45(2014)1013
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What is neural network?

NN [S.Haykin.Neural Networks,Pearson

Education:1999]:

A neural network is a massively parallel
distributed processor made up of simple
processing units, which has a natural
propensity for storing experimental
knowledge and making it available for
use. It ressembles the brain in two
respects:

1 Knowledge is acquired by the
network from its environment
through a learning process

2 Interneuron connection strengths,
known as synaptic weights, are
used to store acquired knowledge

y1

y2

x1

x7
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Model of neuron

✫✪
✬✩

❡
❡
❡ ❥

◗
◗
◗
◗◗s

✲

✟✟✟✟✯

✻

✲ ✲
∑

yk=φ(uk)

x1

x2

xn

wk1

wk2

wkn

bk

uk
Output

uk =

N
∑

j=1

wkjxj + bk , yk = φ(uk)

Choice of sigmoid function φ(u) =

θ(u), tanh(u),
1

1 + e−u

9 M. V. Altaisky Quantum neural networks



Classical artificial neural networks (CANN)

Types of neural networks

Feed-forward networks
Multilayer perceptron

Recurrent networks

Self-Organized networks
Hopfield networks

Fuzzy networks

Types of learning

(wij(t + 1) = wij(t) + ∆wij)

Supervised learning

Unsupervised learning

Hebb rule

∆wij = ηyjyi ,0 < η ≤ 1

∆wij = ηyjdi ,etc .

Cost function

E = 1
2

∑

i ,k

(

d
(k)
i − y

(k)
i

)2
,

i – neuron; k – sample vector
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Quantum information

Classical information

Bit

Physical system that may be in
either of distinct physical states
“0” or “1”,”off” or “on”,↓ or ↑

0 + 0 = 0,0 + 1 = 1, 1 + 1 = 10

0 ∗ 0 = 0,0 ∗ 1 = 0, 1 ∗ 1 = 1

¬0 = 1 ¬1 = 0

Logical circuits

Quantum information

Qubit =quantum bit

|ψ〉 = c0|0〉+ c1|1〉,
c0, c1 ∈ C, |c0|2 + |c1|2 = 1

Bloch sphere

|θ, φ〉 = cos
θ

2
| ↑〉+ eıφ sin

θ

2
| ↓〉,

0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π.
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Qubit network
Nonlinearity can be introduced by measuring procedure R.Zhou et

al. in Proc ICANN 2006.

The nonlinearity is introduced by using the phase of the complex

amplitude u Kouda, Matsui, Nishimura, Peper. 2005:

y =
π

2

1

1 + e−σ
− arctan

ℑ(u)
ℜ(u) , u =

n
∑

k=1

eı
π
2
xkeıθk − eıλ
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Qubit network
Nonlinearity can be introduced by measuring procedure R.Zhou et

al. in Proc ICANN 2006.

The nonlinearity is introduced by using the phase of the complex

amplitude u Kouda, Matsui, Nishimura, Peper. 2005:

f
(

π
2 · 0

)

✲ f (λ)
❅
❅❅❘

P1 f
(

π
2 · P1

)

✲ f (θ1)

P2 f
(

π
2 · P2

)

✲ f (θ2)�
��✒

✲✖✕
✗✔
∑ ✲ atan

ℑφ
ℜφ

π
2 sigmoid(σ)✛

❄
y

f (y)
t

✲

✲

Prob|ℑ(t)|2

Prob|ℜ(t)|2

→ |1〉

→ |0〉
OutputInput
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Associative memory – image classification
A.Vlasov, arxiv.org:quant-ph/9703010

Let us have to store N = k ×m size image, represented by an array
of N Ising spins ξi = ±1. Each image corresponds to the matrix Jij ,
so that the Hamiltonian

H = −1

2

∑

ij

Jijξiξj +
∑

j

bjξj ,

has minimum for this image. The system with the Hamiltonian H is
Hopfield network J.J.Hopfield PNAS 79(1982)2554 In case the sigmoid
function is the sgn function, the network
yi (t) = sgn(

∑

i 6=j Jijyj(t − 1)) is stationary if Jij = 1
N
ξiξj . If we

want to store p different images Jij =
1
N

∑p
l=1 ξ

(l)
i ξ

(l)
j .

For an unknown image ξ(new) the amplitude 〈ξ(new)|ξ(l)〉 has the
maximal value for the basic (l -th) image closest to unknown.
In quantum case connection matrix is a projector: Ĵ=

∑n
i=1 |i〉〈i |
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Associative memory – image classification
A.Vlasov, arxiv.org:quant-ph/9703010

Input ✲ ✲❅❅ |i1〉〈i1| ✲

✲❅❅ |i2〉〈i2| ✲

✲❅❅ |i3〉〈i3| ✲

✲❅❅ |in〉〈in| ✲

❄

❄
Output
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Quantum perceptron (M.V.Altaisky arxiv.org/quant-ph/0107012)

✫✪
✬✩

❞
❞
❞ ❥

◗
◗
◗◗s

✲

✟✟✟✟✯

✻

✲ ✲
∑

|yk〉= F̂ |uk〉

|x1〉

|x2〉

|xn〉

ŵk1

ŵk2

ŵkn

|bk〉

|uk〉
output

|uk〉 =
N
∑

j=1

ŵkj |xj〉, |yk〉 = F̂ |uk〉.

At the absence of interaction with environment, F̂ should be a linear.
Learning rule (F = 1):ŵj (t + 1) = ŵj(t) + η (|d〉 − |y(t)〉) 〈xj |

||d〉 − |y(t + 1)〉|2 =

∣

∣

∣

∣

∣

∣

|d〉 −
n
∑

j=1

ŵj(t + 1)|xj 〉

∣

∣

∣

∣

∣

∣

2

= (1−nη)2 ||d〉 − |y(t)〉|2

The algoritm is converged but not unitary.
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Quantum neural networks vs. quantum computational
networks

Lack of unitarity

The problem of linking quantum neurons together:
How to implement the response function ?
Who and how measures the neuron state ?
How we can cope permanent interaction with environment?

Links to real brain networks

Quantum tunneling in brain neurons definitely
takes place at room temperature:
F.Beck and J.Eccles, PNAS 89(1992)11357
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Quantum annealing machines, D-wave Systems Inc.
M.Johnson et al. Nature 473(2011)194

The first scalable quantum com-
puter was constructed by D-Wave
Systems Inc. It is capable of
solving exponentially difficult min-
imization problems

HP = −
N
∑

i=1

hiσ
z
i +

n
∑

i ,j=1

Jijσ
z
i σ

z
j

in polynomial time. The
’spins’ σzi are implemented
in Superconducting Quantum
Interference Devices. The con-
nection matrix Jij is implemented
by inductive couplings. The su-
perconducting circuit technology
is used.

128 qubit SQUID processor.
From arxiv.org:1204.2821
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SQUID flux qubit

Redrawn from M.Johnson et al.

Nature 473(2011)194
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Realization of quantum annealing

All ’spins’ are initialized in X direction at t = 0

H(t) = −Γ(t)

n
∑

i=1

∆i(t)σ
x
i +Λ(t)



−
n
∑

i=1

hiσ
z
i +

n
∑

i ,j=1

Jijσ
z
i σ

z
j





The transverse magnetic field is adiabatically turned off
Γ(t) → 0 with simultaneous increase of Λ(t) → 1

Redrawn from M.Johnson et al. Nature 473(2011)194
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Optical implementation of Hopfield network

Optical implementation of N-spin Ising model

H = −
∑

1≤i<j≤N

Jijσiσj

http://qnncloud.com

T. Inagaki et al. Large-scale Ising spin network based on
degenerate optical oscillators. Nature Photonics 10(2016)415

P.L.McMahon et al. A fully programmable 100-spin coherent
Ising machine with all-to-all connections. Science
354(2016)614

H. Takesue et al. Quantum neural network for solving
complex combinatorial optimization problems. NTT Technical

Review 15(7)(2017)
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Utsonomiya et al. Opt. Express 19 (2011) 18091

One master laser and M mutually injec-
tion locked slave lasers. Ising model is
implemented by coherent feedback net-
work using optical interference circuits
instead of measurements.

A spin σiz is represented
by right or left polarization
state of each slave laser

H =
∑

i<j

Jijσizσjz+
∑

i

λiσiz

Output readout

σiz =

{

+1 nRi
> nLi

−1 nRi
< nLi
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P.L.McMahon et al. Science 354(2016)614
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T. Inagaki et al. 10.1126/science.aah4243(2016)

A time-division-multiplexed pulsed degenerate optical parametric os-
cillator is formed by a nonlinear crystal [periodically poled lithium
niobate (PPLN) in a fiber ring cavity]
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Quantum neural nets on quantum dots
E.C.Behrman et al. Inf.Sci.128(2000)257

In 2000 E.C.Behrman et al. proposed a model of quantum
neural network where the nonlinearity is attained by means of
interaction of quantum dot array with the substrate phonons.
Each neuron was designed as a ”molecule” of 5 quantum dots

I=+1 I=−1
The evolution of the N neuron array is given by

|ψ1...N(T )〉 =
∑

traject

e
ı
~

∑

j [Kiσ
i
x (j∆t)+Ei (j∆t)σi

z (j∆t)]I [~σz(t)]|ψ1...N(0)〉,

I [~σz(t)] =

∫

∏

k

D[xk(t)]e
ı
~

∫ T
0 dτ

∑

k

[

mk ẋ
2
k

2
+

mkω
2
k
x2
k
(τ)

2
+λi

k
xk(τ)σ

i
z (τ)

]
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Model for two QDs with dipole-dipole interaction
M.V.Altaisky et al. Appl. Phys. Lett. 108(2016)103108

H =
2
∑

i=1

∆i

2
σ
(i)
z +

2
∑

i=1

Ki

2
cos(ωLt)σ

(i)
x +

∑

i 6=j

Jijσ
(i)
+ σ

(j)
−

+
∑

a,i

gaxa|Xi 〉〈Xi |+ Hphonon ,

∆i is the energy gap between the ground and the first excited state
of the i -th QD; Ki is a coupling to an external driving field, Jij is
the dipole-dipole coupling, constructed in analogy to the
dipole-dipole interaction of atoms.

σ
(i)
z = |Xi 〉〈Xi | − |0i 〉〈0i |,σ(i)x = |0i 〉〈Xi |+ |Xi 〉〈0i |,

σ
(i)
+ = |Xi 〉〈0i |,σ(i)− = |0i 〉〈Xi |.

The phonon modes xa are assumed to interact only to the excited
states |Xi〉
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Simple model

We consider a pair of identical QDs

∆1 = ∆2 = ∆, J12 = J21 = J,K1 = K2 = K

in which we can see that in the limit of vanishing driving field (K →
0) the eigenstates of HEx are

|X0〉 − |0X〉√
2

,
|X0〉+ |0X〉√

2
, |00〉, |XX〉

corresponding to the eigenvalues (−J, J,−∆,∆). The first two
states have zero eigenvalue with respect to the interaction with
phonons V =

∑

α,i gαxα|Xi 〉〈Xi | , and thus survive in coherent
superposition even in the presence of a bath of acoustic phonons.
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Phonon bath parametrization

The free phonon Hamiltonian is HPh =
∑

a
p2a
2ma

+ maω
2
ax

2
a

2 .
The phonons in GaAs substrate are assumed to have the spectral
density

J(ω) =
π

2

∑

a

ga

maωa
δ(ω − ωa) ≈ αω3 exp(−(ω/ωc )

2),

which defines the bath correlation function

R(t) =

∫ ∞

0

dω

π
J(ω)

[

cos(ωt) coth

(

ω

2kBT

)

− i sin(ωt)

]

.

This form for J(ω) is the excellent agreement between experiment
and theory of the interaction of single quantum dot with phonon
bath [A.J.Ramsay et al., PRL 104(2010)017402, 105(2010)177402;

D.P.S. McCutcheon et al, PRB 84(2011)081305R; N.S.Dattani, CPC

184(2013)2828 ]

α =
(De − Dh)

2

4π2ρ~v5s
= 0.027ps2for GaAs, ωc =

√
2vs
d

= 2.2ps−1
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Functional integral solution of von Neumann equation
Makarov and Makri J. Chem. Phys. 102 (1995) 4600

In our studies we used the quasi-adiabatic propagator path integral
(QUAPI) technique for the solution of the von Neumann equation
for the density matrix ρ(t), which describes the evolution of the
above described pair of interacting quantum dots:

ρ̇ = trPh

(

− ı

~
[H, ρtot]

)

,

with the initial condition:

ρtot(0) = ρ(0)⊗ e−βHPh

tr (e−βHPh)
.

where for the particular case of two interacting QDs

ρ(0) = |ψ(0)〉〈ψ(0)| , |ψ(0)〉 = 1√
2
(|0X 〉+ |X0〉)
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Quasiadiabatic path integral

The time dependence of the reduced density matrix of the QD sys-
tem is given by the Feynman integral

〈s+N |ρ(t)|s−N 〉 =
∫

(

N−1
∏

m=0

〈s+m+1|e−
ı∆t
~

HOQS |s+m〉〈s−m |e ı∆t
~

HOQS |s−m+1〉
)

×

× 〈s+0 |ρ(0)|s−0 〉I
(

{s±m}N ;∆t
)

N−1
∏

m=0

ds+mds−m ,

where s+m (s−m) denotes the state of the OQS at tm = m∆t on the
time-forward (time-backward) propagation. The discretized bath
influence functional is equal to

I
(

{s±m}N ;∆t
)

= e−
∑

mm′(s+m−s−m )(ηmm′ s
+
m′

−η∗
mm′

s−
m′

),

with ηmm′ being the discretized version of correlator given in
N.S.Dattani, CPC 184 (2013)2828 according to quasi-adiabatic prop-
agator path integral method of Makarov and Makri.
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Numerical codes for path integrals
M.V.Altaisky et al. EPJ WoC 108(2016)02006

A F77 and C++ codes were designed for evaluation of density matri-
ces of systems interacting with heat bath according to the method
described in A.Vagov, M.Croitoru et al., PRB 83 (2011)094303.
The total evolution time t is divided into N time slices:

ραN ,βN
= eit (Ω̂βNβN

−Ω̂αNαN )
∑

{αn,βn}

N
∏

n=1

Mαn−1
αn

M
βn∗
βn−1

n
∏

n′=1

eSnn′ρα0β0
,

where Ω̂ = diag (0,∆,∆, 2∆) is the diagonal part of the system
Hamiltonian without bath, α, β ∈ {00, 0X ,X0,XX}.
The evaluation is performed using the method of augmented density
matrix evaluation (Makarov and Makri, 1995): Rn = TnRn−1, where
Rn coincides with the density matrix of the system Rn for all discrete
time instants less or equal to the memory length nc , or is truncated
by the last time instant n − nc − 1.
The results were also cross tested with the FeynDyn code
N.S.Dattani, CPC 184(2013)2828

30 M. V. Altaisky Quantum neural networks



Quantum dot parameters

Ramsay et al. Phys. Rev. Lett. 105(2010)177402;
McCutcheon et al. Phys. Rev. B 84(2011)081305;
Dattani N.S. Comp. Phys. Comm. 184(2013)2828

m∗ = 0.067me , ρGaAs = 5.37g/cm3, vs = 5.11 · 105cm/s,
ǫ = 10.0, a0 = 3.94nm,E0 = 36.5meV

d = 3.3nm, L = 10nm
Dipole coupling J = 0.595ps−1

Driving field K = 0.476ps−1

Energy gap
∆ = 158ps−1 ≈ 104meV

Cutoff frequency ωc = 2.2ps−1

d=33nm, L = 50nm
Dipole coupling J = 0.476ps−1

Driving field K = 4.76ps−1

Energy gap
∆ = 1.58ps−1 ≈ 1.04meV

Cutoff frequency ωc = 0.22ps−1
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Coherence evolution [Altaisky et al, APL 108(2016)103108]
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Re[<0X|ρ(t)|X0>] was fitted to exp(-γt)
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Initial state
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Ground state density evolution
M.V.Altaisky et al. PNFA 24(2017)24 (arXiv.org:1512.01141)
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Entanglement of Formation [Hill & Wootters, PRL 78(1997)5022]

Four eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ λ4 of
the auxiliary matrix

R(ρ) =
√√

ρρ∗
√
ρ,

where ρ∗ denotes the complex conjuga-
tion, are used to evaluate the concur-

rence C = max(0, λ1 − λ2 − λ3 − λ4).
The entanglement of formation is then
given by

E (ρ) = H

(

1

2
+

1

2

√

1− C 2

)

,

where
H(x) = −x log2 x − (1− x) log2(1− x),
is a binary entropy function.

Bell basis

|e1〉 =
1√
2
(|XX 〉+ |00〉)

|e2〉 =
ı√
2
(|XX 〉 − |00〉)

|e3〉 =
ı√
2
(|X0〉 + |0X 〉)

|e4〉 =
1√
2
(|X0〉 − |0X 〉)

The entanglement of the singlet state is exactly one.
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Evolution of Entanglement [Altaisky et al, EPJ WoC 108(2016)02006]
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The asymptotic value of the density matrix ρ written in magic basis
is ρ(+∞) = diag(1/3, 1/3, 1/3, 0).
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THANK YOU FOR YOUR ATTENTION !!!

Perspectives

Low energy consuming QNN

Compatibility with optical devices
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