

Семинар Центра квантовых технологий МГУ

26.12.2018

Cryogenic traveling-wave parametric amplifier as possible broadband source of microwave biphotons

A. B. Zorin, J. Felgner, C. Kißling, M. Khabipov and R. Dolata

Content

- Traveling-wave parametric amplifier (TWPA) based on superconducting technology
 - (a) Concept
 - (b) Experiment at PTB
- TWPA as a broadband source of nonclassical microwaves
 - (a) Amplification of quantum vacuum
 - (b) SPDC vs. dynamical Casimir effect

Why superconducting technology?

At $\mathbf{T} < \mathbf{T_c}$ it enables lossless dc/low-frequency wiring on chip

For example,

Why superconducting technology?

It enables microwave circuits (e.g. high-Q resonators) with very low damping (for $f \ll \Delta_{supercond}/h \approx 1.76 k_{B}T_{c}/h \sim 50-300 \text{ GHz})$

Example: LC-resonator (10 GHz) coupled to a coplanar transmission line (CPW)

Example: LC-resonator (10 GHz) coupled to a coplanar transmission line

Can operate in quantum regime:

$$\frac{\hbar\omega}{2} \approx k_{\rm B} \times 240 \,\,{\rm mK} \quad ({\rm for \ 10 \, GHz})$$

Sufficiently low temperature is needed!

Cryogenic technique for millikelvin temperatures

Dilution refrigerator:

Typically, base temperature **5–20 mK**, cooling power 100–500 μ W

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
A. Zorin et al.

Nationales Metrologieinstitut Seite 6 von X

Why superconducting technology?

- Enables nonlinear and magnetically-controlled circuit elements

Josephson effect (1962):

At $|I| \le I_c$, current I flows without dissipation (voltage V = 0)!

Josephson **phase difference**
$$\phi \Leftrightarrow$$
 magnetic flux $\Phi = \frac{\Phi_0}{2\pi} \phi \propto \int V dt$

where $\Phi_0 = h/2e \approx 2.07 \times 10^{-15}$ Wb – the flux quantum

 $I = I_c \sin \varphi = I_c \sin \left(2\pi \frac{\Phi}{\Phi_0} \right) = \left[\frac{2\pi I_c}{\Phi_0} \left(1 - \frac{\Phi^2}{6} + ... \right) \Phi \quad \leftarrow \text{ formula like } I \approx L^{-1} \Phi \right]$

This term can be interpreted as inverse (Josephson) inductance L_{J}^{-1}

+ nonlinear terms!

Josephson junction (JJ)

Anharmonic quantum oscillators (e.g., **transmon** qubits)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Josephson junction (JJ)

$$- \times = - \wedge - \wedge - + Nonlinear inductor$$
$$I(\Phi) = L_0^{-1} \left[\Phi - \gamma \Phi^3 \right]$$

Two-junction interferometer

Interference of 2 Josephson currents

Physikalisch-Technische Bundesanstalt
 Braunschweig und Berlin

Nationales Metrologieinstitut Seite 10 von X

The core element of **parametric** oscillators and amplifiers

Parametric Amplifier

Based on reactive elements, periodically (with frequency ω_p) varied in time. Ideally, **parametric amplifiers** do not add noise to the signal!

Cryogenic PA, including Josephson Parametric Amplifiers (JPA), can have

$$T_{noise} \sim \frac{\hbar\omega}{2k_B} \leq 0.5 \, K \quad \text{(non-degenerate, i.e. phase-insensitive JPA)}$$

JPA with **quantum-limited performance** are necessary in many fields!

These JPAs are already available (f ~ 5-20 GHz), but their bandwidth (typically, ~ 10-50 MHz) is sometimes insufficient!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
A. Zorin et al.

Motivation

Josephson Parametric Amplifiers (JPAs) with quantum-limited performance and **large bandwidth** are urgently needed!

- Integration with quantum sensors (SQUID, SET, nanomechanical oscillator, em-/particle-detectors, ...)
- **QI applications** (quantum communication, quantum computing, ...)

Conventional architecture

Large $\mathbf{Q} \rightarrow$ effective mode mixing, but **limited bandwidth**! \longrightarrow Gain – bandwith trade-off

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Seite 15 von X

A broad-band JPA should be free of cavity!

Traveling-wave JPA (TWJPA) architecture

Last 5 years – big progress...

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
A. Zorin et al.

Nationales Metrologieinstitut Seite 16 von X

Traveling-wave JPA (TWJPA): basic idea

CPW line with embedded Josephson junctions (N ~ 1000)

Yaakobi et al. PRB 87, 144301 (2013)

Ideally, exponential growth of signal!

Principle of operation

Optical-fiber parametric amplifier (OPA) is based on Kerr nonlinearity,

$$P = \chi^{(1)} E + \chi^{(3)} EEE + ...$$

Enables four-wave mixing!

$$2\omega_{\rm p} = \omega_{\rm s} + \omega_{\rm i}$$

Principle of operation

Optical-fiber parametric amplifier (OPA) is based on Kerr nonlinearity,

Traveling-wave JPA (TWJPA)

1. Chromatic dispersion of the line

Made of lumped elements, \rightarrow cutoff $\omega_0 = (LC)^{-1/2}$

Self-capacitance of junctions C_J , Josephson plasma $\omega_{pl} = (LC_J)^{-1/2}$

$$k = \frac{2}{a} \arcsin \frac{\omega / 2\omega_0}{\sqrt{1 - (\omega / \omega_J)^2}} \approx \frac{\omega}{a\omega_0} \left(1 + \frac{\omega^2}{2\omega_J^2} + \frac{\omega^2}{24\omega_0^2} \right)$$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
A. Zorin et al.

2. **Phase modulation** due to Kerr nonlinearity $I(\Phi) = L_0^{-1} \left[\Phi - \gamma \Phi^3 \right]$

k depends on signal power and should be compensated!

TWJPA: phase matching problem

Available TWJPAs exploiting dispersion engineering

Power divider -20 dB -2

White et al. APL 106, 242601 (2015) - UCSB

Physikalisch-Technische Bundesanstalt
Brau
A. Zorin et al.

Macklin et al. Science 350, 307 (2015) – UC Berkeley

Possible simpler solution is three-wave mixing (3WM)

$$\omega_{p} = \omega_{s} + \omega_{i}$$

$$idler signal$$

$$ultrace separation!$$

$$ultrace separation!$$

$$ultrace separation!$$

$$ultrace separation!$$

$$ultrace separation!$$

$$ultrace separation!$$

No phase modulation in this case!

The inductance with non-centrosymmetric (i.e., $\chi^{(2)}$) nonlinearity is needed!

$$\mathbf{I} = \mathbf{L}_0^{-1} \left(\Phi - \beta \Phi^2 - \gamma \Phi^3 \dots \right)$$

- Can be engineered

Possible solution [a.z. PRAppl. 6, 034006 (2016)]:

Magnetically-controlled nonlinearity

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Seite 26 von X

Possible modifications of the nonlinear element

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Possible parameters of TWJPA with 3WM

Only one-way gain

Pump frequency: 10+15 GHz

Wavelength: $\lambda_p \approx$ (20÷30) a

Total length of array ~ 50 λ_p

Velocity of wave propagation v ~ 0.03÷0.05 C.

[see, e.g., P. K. Tien, JAP 29, 1347 (1958)]

Experiment at PTB-Braunschweig (arXiv:1705.02859)

- E-beam lithography
- Deposition (Sputtering / PECVD)
- Etching (RIE / IBE)
- Chemical Mechanical Polishing (CMP)

Experiment at PTB-Braunschweig (arXiv:1705.02859)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Seite 30 von X

A. Zorin et al.

Experiment at PTB-Braunschweig (arXiv:1705.02859)

A. Zorin et al.

$1 \text{ cm} \times 1 \text{ cm} \text{Si/SiO}_x \text{chip}$

Measurements @ T = 4.2 K

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Josephson traveling wave parametric amplifier

Nationales Metrologieinstitut Seite 32 von X

Measurements @ PTB, T = 4.2 K

Measurements @ PTB, T = 4.2 K

+ Encouraging recent results by SeeQC-Hypres (reported at ASC, Oct. 2018)

12-17 dB, 4 GHz

arXiv 1811.02703

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut Seite 34 von X

In quantum case...

Production of microwave biphotons out of quantum vacuum

Production of microwave biphotons out of quantum vacuum

In optics

D. N. Klyshko (1967) - prediction

χ⁽²⁾ - crystals: LiNbO3, LiTaO3, BBO etc. Spontaneous parametric down-conversion (SPDC)

Production of microwave biphotons out of quantum vacuum

A. Zorin et al.

TWJPA - quantum regime of operation

Broadband emission is due to broadband phase-matching!

Shape of output spectrum

Example for gain G = 20 dB

Evidence of entanglement?...

Possible prove of two-photon correlation

(1) Cauchy-Schwarz inequality for two-mode intensity correlators, $b = a_{out}$

$$\left[g_{\omega,\omega'}^{(2)}\right]^2 \le g_{\omega}^{(2)}g_{\omega'}^{(2)} \quad (*)$$

where
$$g^{(2)}_{\omega,\omega'} = \frac{\langle \hat{b}^{\dagger}_{\omega}\hat{b}_{\omega}\hat{b}^{\dagger}_{\omega'}\hat{b}_{\omega'}\rangle}{\langle \hat{b}^{\dagger}_{\omega}\hat{b}_{\omega}\rangle\langle \hat{b}^{\dagger}_{\omega'}\hat{b}_{\omega'}\rangle}, \quad g^{(2)}_{\omega} = \frac{\langle \hat{b}^{\dagger}_{\omega}\hat{b}^{\dagger}_{\omega}\hat{b}_{\omega}\hat{b}_{\omega}\rangle}{\langle \hat{b}^{\dagger}_{\omega}\hat{b}_{\omega}\rangle^2}.$$

Eq. (*) is violated, because (at T = 0):

$$g^{(2)}_{\omega,\omega'} = 2 + \frac{1}{\sinh^2 gN} = 2 + \frac{1}{\langle \hat{b}^{\dagger}_{\omega} \hat{b}_{\omega} \rangle} \quad \text{and} \quad g^{(2)}_{\omega} = g^{(2)}_{\omega'} = 2.$$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Possible prove of two-photon correlation

Ordered average of herm. operators $\langle : \hat{f}^{\dagger} \hat{f} : \rangle \ge 0 \leftarrow$ always in classical case

Choice: two-mode squeezing
$$\hat{f}_{\theta} = \frac{1}{2} \left(e^{i\theta} \hat{b}_{\omega} + e^{-i\theta} \hat{b}_{\omega}^{\dagger} \right) + \frac{i}{2} \left(e^{i\theta} \hat{b}_{\omega'} - e^{-i\theta} \hat{b}_{\omega'}^{\dagger} \right)$$

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

... compare with **Dynamical Casimir Effect (DCE)**

Experiment at CTH-Göteborg [Nature (2011); arXiv:1802.05529]

Time-dependent **boundary** = **moving mirror** in optics

Production of microwave biphotons (DCE)

Shape of output spectrum

Intensity

$$n_{max}^{out} \approx 3.5 \times 10^{-3}$$

More than 4 orders weaker than SPDC in TWJPA!

New concept of TWPA with 3WM

[arXiv:1804.09109]

A wave-like variation of the distributed inductance:

 $L^{-1}(x,t) = [1 + m sin(k_p x - \omega_p t)]L_0^{-1}$ Produced by external wave!

...and good phase matching: $\mathbf{k}_{s} + \mathbf{k}_{i} = \mathbf{k}_{s}$!

Another variant of the microwave biphoton source

[arXiv:1804.09109]

Principle of operation: modulation of the line refraction index in a traveling-wave fashion

Dynamical Casimir Effect (DCE) in superconducting circuits

P. Lähteenmäki et al. PNAS 110, 4234 (2012) – Aalto Helsinki

Principle of operation: periodic modulation of the refraction index in cavity

Conclusion and outlook

- 1. Remarkable $\chi^{(2)}$ Josephson (meta)material available
- 2. Proof-of-concept experiment at T = 4.2 K (promising!)

To be done next:

- Quantum-limited performance, squeezing
- Integration with SQUID, SET, qubit, etc.
- Two-mode broadband entanglement

Special thanks to:

Thomas Weimann (PTB) Rüdiger Wendisch (PTB) Viktor Rogalya (Moscow University) Tom Dixon (RHUL) Connor Shelly (RHUL) Emanuele Enrico (INRiM) Luca Fasolo (INRiM)

This work was partially funded by the Joint Research Project PARAWAVE of the European Metrology Programme for Innovation and Research (EMPIR).

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Extra slides

In optics

Spontaneous parametric down-conversion (SPDC):

generation of entangled photons out of vacuum [discovered in 1960s]

SPDC in $\chi^{(2)}$ - crystals: LiNbO3, LiTaO3, BBO etc. ... but $\chi^{(2)}$ - fibers not available! \rightarrow cavity configuration

Photon of pump $\begin{array}{c}
 & p_{noton} & 0^{n} \\
 & \hbar \omega_{p} = \hbar \omega_{1} + \hbar \omega_{2} \\
 & \hbar \omega_{p} = \hbar \omega_{1} + \hbar \omega_{2} \\
 & hase matching condition \\
 & \rightarrow not collinear photons!
\end{array}$

TWJPA - quantum regime of operation

Broadband emission is due to broadband phase-matching!