Автоматизированное проектирование опто-плазмонных схем, предназначенных для обработки информации классическими и квантовыми методами.

ПРОХОРОВ А.В.

Владимирский государственный университет им. А.Г. и Н.Г. Столетовых

Полупроводниковые квантовые точки: оптически-управляемые центры обработки классических/квантовых состояний э.м. поля.

semiconductor quantum dots: discovery,

triumph

and new challenge

 ✓ Ekimov A. I., Onushchenko A. A., JETP Lett. 34, p.345, 1981;
 ✓ Ekimov A. I; USSR State Prize in Science and Engineering, 1975
 ✓ Ekimov A. I; R.W. Wood prize of the OSA, 2006

Samsung Electronics, 2011

- Future Global Wireless THz/infrared Communications:
- D. Bimberg, VCSELs for 200+ Gbit/s data transmission
- S. Komiyama, THz and infrared photon detectors

QD. controllable properties of an artificial atom

Interband transition frequency

$$\omega_{n'n} = \frac{1}{\hbar} \left(eE_g + \frac{\hbar^2}{2a^2} \left(\frac{\chi_{n'l'}^2}{m_e} + \frac{\chi_{nl}^2}{m_h} \right) - \frac{3.56e^2}{8\pi\varepsilon\varepsilon_0 a} \right)$$

Dipole moment of transition

$$p_0^2 = \frac{e^2}{6m_0\omega_0^2} \left(\frac{m_0}{m_e} - 1\right) \frac{\omega_0(\omega_0 + \Delta_0)}{\omega_0 + \frac{2\Delta_0}{3}}$$

Intraband transition frequency

$$\omega_{m'n'} = \frac{1}{\hbar} \left(\frac{\hbar^2}{2m_e a^2} \left(\left| \chi^2_{m'k'} - \chi^2_{n'l'} \right| \right) \right)$$

Dipole moment of transition

$$\mu_{if} = e \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{R} \psi_{i}^{*}(r,\theta,\phi) \cdot r \cdot \psi_{f}(r,\theta,\phi) \cdot r^{2} \sin\theta dr d\theta d\phi$$

$$\# (r,\theta,\phi) = \sqrt{\frac{2}{r}} \frac{1}{R} \frac{J_{l+1/2}(k_{nl}r)}{J_{l+3/2}(\chi_{nl})} Y_{lm}(\Theta,\phi), \rightarrow spherical harmonics$$

 $1P_e$

 $1S_e$

properties optimization of QD-like particles

Software

calculation of QD electronic properties Valence Force Field (VFF) from tiberCAD (IT)

QD Optical transitions, Quantum Dot Lab v. 1.x, Purdue University (UK)

http://test_plazm.expertpro.online/main/

MOCVD simulation
 PROCOM from CrossLight (CA)

✓ Full QD analysis
 NEMO 3-D (UK) h

✓ QD deign DP QD from dp Plasmonic (RU)

http://plazm.expertpro.online/main

II. Фотонные/плазмонные схемы: управление распространением локализованных состояний э.м. поля.

optical waveguides

M. Lukin's group (Harvard University)

M. Lončar's group (Harvard University)

plasmonic waveguides

✓ ARROW waveguidesC. Reinhardt et. al, J. Opt. Soc. Am. B, 30,

✓ CPP-NV coupling
 Esteban Bermudez-Urena et. al,
 Nature communications, 6:7883, 2015

Copper Plasmonic Waveguides Valentyn S. Volkov et. al, Nano Lett., 16, 362, 2015

2898, 2013

graphene: perspective material for plasmonic waveguides

Kubo formula for total conductivity of graphene

$$\sigma_{g}(\omega,\mu_{c},\tau,T) = \frac{-ie^{2}}{\omega+i/\tau} \int_{0}^{\infty} \epsilon \left(\frac{\partial f_{d}(\epsilon)}{\partial \epsilon} - \frac{\partial f_{d}(-\epsilon)}{\partial \epsilon} \right) d\epsilon - ie^{2}/\pi\hbar^{2}(\omega+i/\tau) \int_{0}^{\infty} \frac{f_{d}(\epsilon) - f_{d}(-\epsilon)}{(\omega+i/\tau)^{2} - 4(\epsilon/\hbar)^{2}} d\epsilon$$

$$f_{d}(\epsilon) = 1/\left(e^{(\epsilon-\mu_{c})/kT} + 1\right)$$
Intraband (dominant under $|2\mu_{c}| > \hbar\omega$)
Interband (dominant under $|2\mu_{c}| < \hbar\omega$)

dielectric permittivity

 $\varepsilon_{gr} = 1 + i \frac{\sigma_g}{\omega \Delta_g \varepsilon_0}$

$$n_{eff} = \sqrt{\varepsilon_d - \left(\frac{2\varepsilon_d\varepsilon_0 c}{\sigma_g}\right)^2}$$

GP wavelength

$$\lambda_{SPP} = \frac{\lambda_0}{n_{eff}}$$

propagation length
$$L_{SPP} = \frac{\lambda_0}{4\pi \text{Im}\left(\frac{\lambda_0}{\lambda_{SPP}}\right)}$$

Wang, B., et. al, Phys. Rev. Lett. 109 (7):073901, 2012

Vakil, A. et. al, Science 332 (6035): 1291, 2011

graphene waveguides

Lu, W.B., et al., Optics express, 21(9): p. 10475, 2013

(a)

FDTD for full-wave electromagnetic simulation of SPP in graphene

calibration of algorithm

http://test_plazm.expertpro.online/main/ by our Software

graphene characterization results by our Software for IR range

GR	1		2,1	Æ			single layer		double-layer sheet				
$\mu_c = 0.6 \text{ eV}$	л ₀ , μm	E _d	$\frac{2\mu_c}{\hbar\omega_0}$	01, S/m	$\sigma_{ m intra}$, S	$\sigma_{ m inter}$, S	λ _{SPP} , nm	<i>L_{SPP}</i> , μm	Re(ξ) , nm	$n_{EF^+}^{(\mathrm{R})}$	λ _{SPP+} , nm	L _C , nm	$\overline{L}_{SPP+}, \mu m$
$\tau = 0.9 \text{ ps},$ T = 300 K	4	1 (air)	3.88	3.193 • 10 ⁷	$\begin{array}{c} 3.5 \cdot 10^{-7} + 1.49 \\ \cdot 10^{-4} i \end{array}$	$2.51 \cdot 10^{-8} \\ - 1.02 \cdot 10^{-5} i$	104.6	3.1	33	49	81.5	61	3.5
I = 300 K, $\Delta_g = 2 \text{ nm}$	4	2.103 (SiO ₂)	3.88	3.193 • 10 ⁷	$3.5 \cdot 10^{-7} + 1.49$ $\cdot 10^{-4}i$	$2.51 \cdot 10^{-8} \\ - 1.02 \cdot 10^{-5} i$	49.7	1.5	15.8	86.1	46.5	108.3	1.6
	1.96	2.103 (SiO ₂)	1.9	3.193 • 10 ⁷	$8.4 \cdot 10^{-8} + 7.3$ $\cdot 10^{-5} i$	$3.24 \cdot 10^{-8}$ - 2.26 \cdot 10^{-5}i	8.86	0.3	2.82	221	8.86	2.3 • 10 ⁶	0.3
	2.56	2.022	2.483	3.193 • 10 ⁷	$1.44 \cdot 10^{-7}$ + 9.54 \cdot 10^{-5}i	$2.8 \cdot 10^{-8} \\ - 1.65 \cdot 10^{-5} i$	18.8	0.7	6	136	18.8	2641	0.7
	8.04	2.022	7.8	3.193 • 10 ⁷	$1.42 \cdot 10^{-6} + 3$ $\cdot 10^{-4}i$	$2.39 \cdot 10^{-8}$ - 4.98 \cdot 10^{-6}i	224.2	3.8	71	59.3	135.5	74	3.7

III. Функциональные элементы на основе локализованных состояний э.м. поля и квантоворазмерных хромофоров

Chromophore +graphene

A Platform for Strong Light-Matter Interactions, F. Javier García de Abajo et. al, Nano Lett., 11, 3370, (2011) PL of QD near graphene, Ajayi O. A., et. al, Appl. Phys. Lett. 95, 141103 (2009)

The basis for strong SPP-QD coupling

Novoselov K.S., et. al, Nature photonics, 6, p. 749, 2012

Liu, P., et al., Optics express, 21(26): p. 32432, 2013

GR waveguide integrated with stub-nanoresonator

GR $\mu_c = 0.6 \text{ eV}$ $\tau = 0.9 \text{ ps}, T = 300 \text{ K}, \Delta_g = 2 \text{ nm}$ waveguide

d = 20 nm D = 23.8 nm

SPP parameters $\lambda_2 = 8.04 \ \mu m$ for signal SPP $\lambda_{SPP} = 135.5 \ nm$

GR waveguide integrated with stub-nanoresonator loaded

with CS QD

InAs/ZnS core-shell QD

core radius $a_{QD} = 9.9$ nm

Ladder-type scheme of interaction in the stub with CS QD

Pump SPP

 $\lambda_1 = 2.56 \ \mu m$

$$I_1/I_2 = 10$$

Main effect

phase shift $\Delta \phi = \pi$ of signal SPP due to SPP-QD interaction

simulation

A. V. Prokhorov, et. al, arXiv: 1812.04487 [cond-mat.mes-hall]

tuning/bitrate

A. V. Prokhorov, et. al, arXiv: 1812.04487 [cond-mat.mes-hall]

fabrication

Materials and fabricating technology.

- .Preparation of SiO₂ (Al₂O₃) substrate with recess corresponding to the further stub nanoresonator with height D = 23.8 nm.
- M₁. Plasma enhanced chemical vapor deposition (PECVD) method for deposition of graphene on substrate. CH₄ Plasma Source. The thickness of graphene single layer is $\Delta_g = 2$ nm (chemical potential of graphene $\mu_c = 0.6$ eV, the time of electrons scattering is $\tau = 0.9$ ps).
- M₂. Loading the InAs/ZnS core-shell QD (radius of core is 9.9 nm) into stub nanoresonator on the base of atomic force microscopy (AFM) nanomanipulation technique.
- M3. Pretreatment of graphene surface (oxidation or polymer coating). The polymer buffer layer between graphene and conventional gate dielectrics allows to achieve high carrier mobility.
- M4. The atomic layer deposition (ALD) method for deposition of dielectrics on graphene. The distance between graphene sheets is d = 20 nm

For SiO, on graphene. Precursors SiCl₄ and H₂O or Silicon precursors.

<u>For Al₂O, on graphene</u>. Precursors AlCl₃-H₂O or trimethylaluminum (TMA; Al(CH₃)₃) and water (H₂O).

IV. Наноразмерные квантовые гейты на основе гибридных систем.

Biexciton states as a base for photons entanglement QD energy levels diagram

b) $\Delta_1 \gg \gamma_{RAD}$; $\omega_{Vi} = \omega_{Hj}$: time-bin entanglement

c) $\Delta_1 \ll \gamma_{RAD}$: which-path quantum interference

Biexciton states as a base for two-qubits gates

QD energy levels diagram

Left patch

Right patch

quantum dynamics

QD energy levels diagram

the Hamiltonian

$$H = -\hbar[\cos(\varphi)(g_1c_1S_x^+ + g_2c_2S_b^+ + g_1^*c_1^+S_x + g_2^*c_2^+S_b) + +\sin(\varphi)(g'_2c_2S_y^+ + g'_1c_1S_b^+ + g'_2c_2^+S_y + g'_1c_1^+S_b)]$$

the state of two-qubit register

 $\psi = \alpha |1\rangle_{c_1} |1\rangle_{c_2} |g\rangle + \beta |0\rangle_{c_1} |1\rangle_{c_2} |x\rangle + \gamma |1\rangle_{c_1} |0\rangle_{c_2} |y\rangle + \varepsilon |0\rangle_{c_1} |0\rangle_{c_2} |b\rangle$

 $|x\rangle = \frac{1}{\pi_x \sqrt{c_2}} \frac{|b\rangle}{c_1} \frac{|b\rangle}{\pi_y} |y\rangle$ $= \frac{1}{\pi_x \sqrt{c_1}} \frac{|c_1|}{c_2 \sqrt{\pi_y}} |y\rangle$

 $\varphi=\pi,g=10^{10}~{\rm s}^{-1}$

two-qubit gate

QD energy levels diagram

the Hamiltonian

 $H = -\hbar[\cos(\varphi)(g_1c_1S_x^+ + g_2c_2S_b^+ + g_1^*c_1^+S_x + g_2^*c_2^+S_b) + \\ +\sin(\varphi)(g_2'c_2S_y^+ + g_1'c_1S_b^+ + g_2'c_2^+S_y + g_1'c_1^+S_b)]$

the state of two-qubit register

 $\psi = \alpha |1\rangle_{c_1} |1\rangle_{c_2} |g\rangle + \beta |0\rangle_{c_1} |1\rangle_{c_2} |x\rangle + \gamma |1\rangle_{c_1} |0\rangle_{c_2} |y\rangle + \varepsilon |0\rangle_{c_1} |0\rangle_{c_2} |b\rangle$

$|x\rangle \frac{\pi_{x}/c_{2}}{\left|x\rangle} \frac{|b\rangle}{\pi_{x}/c_{1}} |y\rangle$ $|x\rangle \frac{1}{\left|x\rangle} \frac{1}{\left|y\rangle}{\left|y\rangle} |y\rangle$

Quantum state transformation table,

 $g = 10^{10} \text{ s}^{-1}$, $t_B = 0,222 \text{ ns}$

0.7 -				in	out, t _A	out, t _B	out, t _c	out, t _D
$\frac{0.6}{0.5}$	D_{\circ}		$ 1\rangle_{\rm c_1} 1\rangle_{\rm c_2} g\rangle$	α0	$\frac{\alpha_0 - i\sqrt{2}\beta_0 - \varepsilon_0}{2}$	$-\varepsilon_0$	$\frac{\alpha_0 + i\sqrt{2}\beta_0 - \varepsilon_0}{2}$	α ₀
0.2 - 0.1 -	A	В	$ 0\rangle_{c_1} 1\rangle_{c_2} x\rangle$	β_0	$-\frac{i\alpha_0+i\varepsilon_0}{\sqrt{2}}$	$-\beta_0$	$\frac{i\alpha_0 + i\varepsilon_0}{\sqrt{2}}$	β_0
0.4 0.3	<u>_</u>	0.6	$ 1\rangle_{c_1} 0\rangle_{c_2} y\rangle$	γo	γ ₀	γ ₀	γo	γo
0 β	0.1 0.2	0.4 α ²	$ 0\rangle_{c_1} 0\rangle_{c_2} b\rangle$	ε ₀	$\frac{-\alpha_0 - i\sqrt{2}\beta_0 + \varepsilon_0}{2}$	$-\alpha_0$	$\frac{-\alpha_0 + i\sqrt{2}\beta_0 + \varepsilon_0}{2}$	ε_0

quantum dynamics

QD energy levels diagram

$$\varphi = \frac{\pi}{4},$$

$$\dot{\alpha} = \cos\left(\frac{g_1 t}{\sqrt{2}}\right) \left[\alpha_0 \cos\left(\frac{g_2 t}{\sqrt{2}}\right) + i\gamma_0 \sin\left(\frac{g_2 t}{\sqrt{2}}\right)\right] + \sin\left(\frac{g_1 t}{\sqrt{2}}\right) \left[i\beta_0 \cos\left(\frac{g_2 t}{\sqrt{2}}\right) - \varepsilon_0 \sin\left(\frac{g_2 t}{\sqrt{2}}\right)\right], \quad \frac{\pi_x}{\sqrt{c_1 - \frac{c_2}{\pi_y}}} |g\rangle$$

$$\dot{\beta} = \dots$$

$$K = g_1^2 + g_2^2; \ \theta = \sqrt{g_1^2 + g_2^2}t = \frac{\pi}{2}.$$

QD energy levels diagram

two-qubit gate

the state of two-qubit register

 $\psi = \alpha |1\rangle_{c_1} |1\rangle_{c_2} |g\rangle + \beta |0\rangle_{c_1} |1\rangle_{c_2} |x\rangle + \gamma |1\rangle_{c_1} |0\rangle_{c_2} |y\rangle + \varepsilon |0\rangle_{c_1} |0\rangle_{c_2} |b\rangle$

quantum state transformation table,

$$g = 10^{10} \text{ s}^{-1}$$
, $t_A = 0,111 \text{ ns}$, $t_C = 0,333 \text{ ns}$

$\begin{array}{c} 0.7 \\ - \\ 0.6 \\ - \\ 0.5 \\ - \\ - \\ - \\ 0.3 \\ - \\ 0.2 \\ - \\ 0.1 \\ - \end{array}$				in	out, t _A	out, t _B	out, t _c	out, t _D
	D,		$ 1\rangle_{c_1} 1\rangle_{c_2} g\rangle$	α0	$\frac{\alpha_0 + i\beta_0 + i\gamma_0 - \varepsilon_0}{2}$	$-\varepsilon_0$	$\frac{\alpha_0 - i\beta_0 - i\gamma_0 - \varepsilon_0}{2}$	α0
	•A	С	$ 0\rangle_{c_1} 1\rangle_{c_2} x\rangle$	β_0	$\frac{i\alpha_0+\beta_0-\gamma_0+i\varepsilon_0}{2}$	$-\gamma_0$	$\frac{-i\alpha_0+\beta_0-\gamma_0-i\varepsilon_0}{2}$	β_0
0.4	0.3	· B·	$ 1\rangle_{c_1} 0\rangle_{c_2} y\rangle$	Ŷο	$\frac{i\alpha_0 - \beta_0 + \gamma_0 + i\varepsilon_0}{2}$	$-\beta_0$	$\frac{-i\alpha_0 - \beta_0 + \gamma_0 - i\varepsilon_0}{2}$	γ ₀
	0.2 0.1	0.4 0.2 \alpha ^2	$ 0\rangle_{c_1} 0\rangle_{c_2} b\rangle$	E ₀	$\frac{-\alpha_0 + i\beta_0 + i\gamma_0 + \varepsilon_0}{2}$	$-\alpha_0$	$\frac{-\alpha_0 - i\beta_0 - i\gamma_0 + \varepsilon_0}{2}$	ε ₀

Opto-plasmonic circuits

Sergey I. Bozhevolnyi (Denmark)

Valentin Flauraud, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Plasmonic nm-process

Markus Lippitz, Bayreuth, Germany

