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TURING MACHINE1

1A.M. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society, 2, 42
(1), pp. 230–65 (1936) (published 1937).)



HALTING PROBLEM AS AN UNDECIDABLE PROBLEM
Undecidable problem is a decision problem for which there is no
algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbi-
trary computer program and an input, whether the program will
finish running, or continue to run forever.
Theorem: The HP is undecidable over Turing machines.

”Proof”
• T1,T2, . . . , – algorithms which have as input and output

natural numbers.

• Suppose there exist algorithm A(N,X ):
• halts and returns 1 if TN(X ) does not halt
• does not halt otherwise

• Then D(N) = A(N,N) halts iff TN(N) does not halt.

• D = TK : D(K ) = A(K ,K ) halts if D(K ) does not halt.
Contradiction!
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DIOPHANTINE EQUATIONS

Diophantine equations are polynomial equations with
integer coefficients and integer solutions:

D(x1, . . . , xn) = 0

Examples:

• x2 − ny2 = 1 (Pell’s eq.): (1, 0) and (x , y) : x/y ∼
√
n

• x2 + y2 = z2 (Pythagorean triples): (3,4,5), (5,12,13), ...

• xn + yn = zn for n > 2 (Fermat’s Last Theorem): not
solvable
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HILBERT’S 10TH PROBLEM

Find an algorithm which can determine whether a
given Diophantine equation is solvable.

NO!
(Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam)
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UNCOMPUTABLE PROBLEMS IN QUANTUM PHYSICS

Diophantine equation D(x1, . . . , xn) = 0 has a solution iff n-
boson’s Hamiltonian Ĥ = D(a+1 a1, . . . , a

+
n an) has the zero ground

state. [T.D. Kieu, Int. J. Theor. Phys. 42, 1461 (2003).]

Hilbert’s 10th problem−→ The ground state of n-bosons is un-
computable [W. D. Smith, App. Math. Comp. 178, 184 (2006)]

Whether a quantum system is gapless is not decidable [T. S. Cubitt
et al, Nature 528, 207 (2015)].



QUANTUM CONTROL OVERVIEW

H = H0 + u(t)V , Pi→f (u)→ max

1980th: V. Belavkin, A. Butkovskiy, P. Brumer, H. Rabitz, S. Rice,
Y. Samoilenko, M. Shapiro, D. Tannor, etc.

Now: Extremely high interest. Applications:

• Quantum computing

• Quantum information

• Laser-assisted chemistry, NMR.

Nobel Prize in Physics 2012: S. Haroche and D. Wineland for
experimental manipulation of individual quantum systems.



TYPICAL CONTROL TASKS

State-to-state transfer:

ψi
u(t)−−−−−−−−−→ ψf , Pi→f = |〈ψf ,UTψi〉|2 → max

〈ÔT 〉 = Tr
[
ÔUTρiU

†
T

]
→ max

Quantum gate/process generation:

I u(t)−−−−−−−−−→W , |TrW †UT | → max

Examples: W = CNOT, SWAP, Toffoli, ...
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QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

dρut
dt

= −i [H0 + u(t)V , ρut ] + L(ρut ), ρut=0 = ρ0

Control space U :

E.g., finite energy controls, u ∈ U = L2([0,T ];R)

Objective functional:

FO(u) = Tr[OρuT ]→ max
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COHERENT CONTROL AND CONTROLLABILITY

Coherent control

d |ψt〉
dt

= − i

~

(
H0 + u(t)V

)
|ψt〉

Controllability

|ψi〉
u(t)−−→ |ψf〉 = UT |ψi〉

Controllability criteria:

Lie{−iH0,−iV } ∼ su(n) (or sp(n/2))



KRAUS MAPS

Kraus map Φ — most general transformation of density matrix:

• Linear map Φ : ρ→ ρT ;

• Completely positive, i.e., Φ⊗ IK ≥ 0;

• Trace preserving, i.e., TrΦ(ρ) = Trρ.

Kraus operator-sum representation:

Φ(ρ) =
∑
k

KkρK
+
k ,

∑
k

K+
k Kk = I.

For any target state ρf , there exist a universally optimal Kraus
map Φρf such that for any ρ: Φρf (ρ) = ρf .

2

2R. Wu, A. Pechen, C. Brif, H. Rabitz, “Controllability of open quantum
systems with Kraus-map dynamics”, J. Phys. A: Math. Theor., 40, 5681–5693
(2007).
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INCOHERENT CONTROL

General method for coherent and incoherent control of open quan-
tum systems was developed3:

dρt
dt

= − i

~
[Hu(t), ρt ] + Ln(t)(ρt),

Here u is coherent (e.g., laser field) and n is incoherent (e.g.,
temperature distribution) control.

Kraus map:

ρ0 → ρT = Φ(u,n)(ρ0) =
∑
k

Kkρ0K
+
k .

3A. Pechen and H. Rabitz, “Teaching the environment to control quantum
systems”, Phys. Rev. A. 73, 062102 (2006).
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COMPLETE CONTROLLABILITY

Our general approach with coherent and incoherent controls was used to show4

that for a generic N-level quantum system (for any N), there exist coherent u
and incoherent n controls, which approximately steer any initial state to any
predefined target state for any N-level system. In other words, open
quantum systems are approximately controllable in the set of all density
matrices. Allows to construct universally optimal Kraus maps.

An example with two levels of
calcium atom: moving from the
point (0, 0,−1) to the point
(0, 0, 0.5) in the Bloch ball. Two
stages of the control:
1) using only incoherent control;
2) using only coherent control.

4A. Pechen, “Engineering arbitrary pure and mixed quantum states”, Phys.
Rev. A. 84, 042106 (2011). (arXiv:1210.2281 [quant-ph])

https://arxiv.org/abs/1210.2281


CONTROL BY QUANTUM MEASUREMENTS

• Belavkin (1983): Theory of controlling quantum systems
measured in discrete or continuous time; Wiseman, Milburn
(1990): Feedback control. Balachandran, Roy (2000):
Quantum anti-Zeno effect.

• Pechen, Ilyn, Shuang, Rabitz (2006):5 General method

Optimal control by non-selective
quantum measurements. Exact
analytical solution for a qubit by n
measurements:

Qi = {Pi}, MQ(ρ) =
∑
i

PiρPi

J = Tr[OMQn . . .MQ1(ρ)]

Applied by6

5A. Pechen, N. Il’in, F. Shuang, H. Rabitz, “Quantum control by von
Neumann measurements”, Phys. Rev. A, 74, 052102 (2006).

6M. S. Blok et al, Nature Physics 10, 189 (2014); H. W. Wiseman,
Quantum control: Squinting at quantum systems, Nature 470, 178 (2011); etc.



DIGITIZED QUANTUM CONTROL
DISCRETE CONTROLS: In experiments we always have access to
a finite number N of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and obser-
vational numerical data are rational numbers.7 (O, ρ0,Ki ,j)

N elementary controls are most generally described by Kraus maps

Φi (ρ) =
∑
k

Ki ,kρK
†
i ,k ,

∑
k

K †i ,kKi ,k = I

DQC is to find a control policy (if it exists) p = (p1, . . . , pL) ∈ AP
(the set of accessible controls) such that

F(p) := Tr[OΦpL . . .Φp1(ρ0)] = 0

7I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic
Numbers, Ultrametric Analysis and Applications. 2, 77–87 (2010); B.
Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic
Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal.
Appl. 9 (2), 87–121 (2017).



DIGITIZED QUANTUM CONTROL
DISCRETE CONTROLS: In experiments we always have access to
a finite number N of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and obser-
vational numerical data are rational numbers.7 (O, ρ0,Ki ,j)

N elementary controls are most generally described by Kraus maps

Φi (ρ) =
∑
k

Ki ,kρK
†
i ,k ,

∑
k

K †i ,kKi ,k = I

DQC is to find a control policy (if it exists) p = (p1, . . . , pL) ∈ AP
(the set of accessible controls) such that

F(p) := Tr[OΦpL . . .Φp1(ρ0)] = 0

7I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic
Numbers, Ultrametric Analysis and Applications. 2, 77–87 (2010); B.
Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic
Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal.
Appl. 9 (2), 87–121 (2017).



DIGITIZED QUANTUM CONTROL
DISCRETE CONTROLS: In experiments we always have access to
a finite number N of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and obser-
vational numerical data are rational numbers.7 (O, ρ0,Ki ,j)

N elementary controls are most generally described by Kraus maps

Φi (ρ) =
∑
k

Ki ,kρK
†
i ,k ,

∑
k

K †i ,kKi ,k = I

DQC is to find a control policy (if it exists) p = (p1, . . . , pL) ∈ AP
(the set of accessible controls) such that

F(p) := Tr[OΦpL . . .Φp1(ρ0)] = 0
7I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic

Numbers, Ultrametric Analysis and Applications. 2, 77–87 (2010); B.
Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic
Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal.
Appl. 9 (2), 87–121 (2017).



DQC TO DIOPHANTINE EQUATIONS

Define

φ̂k(i) =
N∑
l=1

Kl ,k

N∏
j=1,j 6=l

i − j

l − j
such that φ̂k(i) = Ki ,k for 1 ≤ i ≤ N

Then

F(p)→ F (p) =
∑

k1,...,kP

Tr

O

[
1∏

l=L

φ̂kl (pl)

]
ρ0

[
1∏

m=L

φ̂km(pm)

]†
Solving the DQC is equivalent to solving the Diophantine equation:

F 2(p) +
∏

p′∈AC

L∑
k=1

(pk − p′k)2 = 0



DIOPHANTINE EQUATIONS TO DQC

D(x1, . . . , xn) = 0⇒


ρ0 = |0, . . . , 0〉〈0, . . . , 0|
Φi (ρ) = D̂iρD̂

+
i , D̂i = ea

+
i −ai

Ô = −D(a1, . . . , an)+D(a1, . . . , an)

Hilbert’s 10th problem implies unsolvability of DQC!



EXAMPLE: NP-HARD TWO-BOSON PROBLEM

Deciding the solvability of the Diophantine equation

αx21 + βx2 = γ

with respect to x1 and x2 is NP-hard.

Hence NP-hard to find a 2-mode state such that 〈Ô〉 = 0 with

Ô = −(αâ+1 â
+
1 + βâ+2 − γ)(αâ1â1 + βâ2 − γ)



CONCLUSIONS

The negative answer to Hilbert’s 10th problem implies that there
is no algorithm deciding whether there is a control policy for con-
necting any given pair of quantum states or, more generally, max-
imizing expectation of an observable.

ψi
DQC?−−−−−−−−−−−→ ψf

D.I. Bondar, A.N. Pechen, Uncomputability and complexity of
quantum control, arXiv:1907.10082


