UNCOMPUTABILITY AND COMPLEXITY OF QUANTUM CONTROL

Alexander PECHEN
Steklov Mathematical Institute \& MISiS
(Joint work with Denis BONDAR, Tulane University, USA)

Moscow State University, 05 November 2019
D.I. Bondar, A.N. Pechen, Uncomputability and complexity of quantum control, arXiv:1907.10082

STRUCTURE

- (Un)computability
- Diophantine equations
- Quantum control: overview
- Digitizes quantum control
- Result

ALGORITHMS

Muhammad ibn Musa al-Khwarizmi (780-850)

TURING MACHINE ${ }^{1}$

${ }^{1}$ A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 2, 42 (1), pp. 230-65 (1936) (published 1937).)

HALTING PROBLEM AS AN UNDECIDABLE PROBLEM

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

HALTING PROBLEM AS AN UNDECIDABLE PROBLEM

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.

HALTING PROBLEM AS AN UNDECIDABLE PROBLEM

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.
Theorem: The HP is undecidable over Turing machines.

HALTING PROBLEM AS AN UNDECIDABLE PROBLEM

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.
Theorem: The HP is undecidable over Turing machines.
"Proof"

- T_{1}, T_{2}, \ldots, - algorithms which have as input and output natural numbers.
- Suppose there exist algorithm $A(N, X)$:
- halts and returns 1 if $T_{N}(X)$ does not halt
- does not halt otherwise
- Then $D(N)=A(N, N)$ halts iff $T_{N}(N)$ does not halt.
- $D=T_{K}: D(K)=A(K, K)$ halts if $D(K)$ does not halt. Contradiction!

DIOPHANTINE EQUATIONS

Diophantine equations are polynomial equations with integer coefficients and integer solutions:

$$
D\left(x_{1}, \ldots, x_{n}\right)=0
$$

DIOPHANTINE EQUATIONS

Diophantine equations are polynomial equations with integer coefficients and integer solutions:

$$
D\left(x_{1}, \ldots, x_{n}\right)=0
$$

Examples:

- $x^{2}-n y^{2}=1$ (Pell's eq.): $(1,0)$ and $(x, y): x / y \sim \sqrt{n}$
- $x^{2}+y^{2}=z^{2}$ (Pythagorean triples): $(3,4,5),(5,12,13), \ldots$
- $x^{n}+y^{n}=z^{n}$ for $n>2$ (Fermat's Last Theorem): not solvable

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

NO!

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

NO!

(Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam)

uncomputable Problems In quantum Physics

Diophantine equation $D\left(x_{1}, \ldots, x_{n}\right)=0$ has a solution iff n boson's Hamiltonian $\hat{H}=D\left(a_{1}^{+} a_{1}, \ldots, a_{n}^{+} a_{n}\right)$ has the zero ground state. [T.D. Kieu, Int. J. Theor. Phys. 42, 1461 (2003).]

Hilbert's 10th problem \longrightarrow The ground state of n-bosons is uncomputable [W. D. Smith, App. Math. Comp. 178, 184 (2006)]

Whether a quantum system is gapless is not decidable [T. S. Cubitt et al, Nature 528, 207 (2015)].

QUANTUM CONTROL OVERVIEW

1980th: V. Belavkin, A. Butkovskiy, P. Brumer, H. Rabitz, S. Rice, Y. Samoilenko, M. Shapiro, D. Tannor, etc.

Now: Extremely high interest. Applications:

- Quantum computing
- Quantum information
- Laser-assisted chemistry, NMR.

Nobel Prize in Physics 2012: S. Haroche and D. Wineland for experimental manipulation of individual quantum systems.

TYPICAL CONTROL TASKS

State-to-state transfer:

$$
\begin{array}{ll}
\psi_{\mathrm{i}} \xrightarrow{u(t)} \psi_{\mathrm{f}}, \quad & P_{\mathrm{i} \rightarrow \mathrm{f}}=\left|\left\langle\psi_{\mathrm{f}}, U_{T} \psi_{\mathrm{i}}\right\rangle\right|^{2} \rightarrow \text { max } \\
& \left\langle\hat{O}_{T}\right\rangle=\operatorname{Tr}\left[\hat{O} U_{T \rho_{\mathrm{i}}} U_{T}^{\dagger}\right] \rightarrow \max
\end{array}
$$

TYPICAL CONTROL TASKS

State-to-state transfer:

$$
\begin{aligned}
\psi_{\mathrm{i}} \xrightarrow[\mathrm{f}]{u(t)} \psi_{\mathrm{f}}, \quad & P_{\mathrm{i} \rightarrow \mathrm{f}}=\left|\left\langle\psi_{\mathrm{f}}, U_{T} \psi_{\mathrm{i}}\right\rangle\right|^{2} \rightarrow \max \\
& \left\langle\hat{O}_{T}\right\rangle=\operatorname{Tr}\left[\hat{O} U_{T} \rho_{\mathrm{i}} U_{T}^{\dagger}\right] \rightarrow \max
\end{aligned}
$$

Quantum gate/process generation:

$$
\mathbb{I} \xrightarrow{u(t)} W, \quad\left|\operatorname{Tr} W^{\dagger} U_{T}\right| \rightarrow \max
$$

Examples: $W=$ CNOT, SWAP, Toffoli, ...

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$
\frac{d \rho_{t}^{u}}{d t}=-i\left[H_{0}+u(t) V, \rho_{t}^{u}\right]+\mathcal{L}\left(\rho_{t}^{u}\right), \quad \rho_{t=0}^{u}=\rho_{0}
$$

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$
\frac{d \rho_{t}^{u}}{d t}=-i\left[H_{0}+u(t) V, \rho_{t}^{u}\right]+\mathcal{L}\left(\rho_{t}^{u}\right), \quad \rho_{t=0}^{u}=\rho_{0}
$$

Control space \mathscr{U} :

$$
\text { E.g., finite energy controls, } u \in \mathscr{U}=L^{2}([0, T] ; \mathbb{R})
$$

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$
\frac{d \rho_{t}^{u}}{d t}=-i\left[H_{0}+u(t) V, \rho_{t}^{u}\right]+\mathcal{L}\left(\rho_{t}^{u}\right), \quad \rho_{t=0}^{u}=\rho_{0}
$$

Control space \mathscr{U} :

$$
\text { E.g., finite energy controls, } u \in \mathscr{U}=L^{2}([0, T] ; \mathbb{R})
$$

Objective functional:

$$
\mathscr{F}_{O}(u)=\operatorname{Tr}\left[O \rho_{T}^{u}\right] \rightarrow \max
$$

COHERENT CONTROL AND CONTROLLABILITY

Coherent control

$$
\frac{d\left|\psi_{t}\right\rangle}{d t}=-\frac{i}{\hbar}\left(H_{0}+u(t) V\right)\left|\psi_{t}\right\rangle
$$

Controllability

$$
\left|\psi_{\mathrm{i}}\right\rangle \xrightarrow{u(t)}\left|\psi_{\mathrm{f}}\right\rangle=U_{T}\left|\psi_{\mathrm{i}}\right\rangle
$$

Controllability criteria:

$$
\operatorname{Lie}\left\{-i H_{0},-i V\right\} \sim \mathfrak{s u}(n)(\text { or } \mathfrak{s p}(n / 2))
$$

KRAUS MAPS

Kraus map Φ - most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_{T}$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_{K} \geq 0$;
- Trace preserving, i.e., $\operatorname{Tr} \Phi(\rho)=\operatorname{Tr} \rho$.
${ }^{2}$ R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., 40, 5681-5693 (2007).

KRAUS MAPS

Kraus map Φ - most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_{T}$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_{K} \geq 0$;
- Trace preserving, i.e., $\operatorname{Tr} \Phi(\rho)=\operatorname{Tr} \rho$.

Kraus operator-sum representation:

$$
\Phi(\rho)=\sum_{k} K_{k} \rho K_{k}^{+}, \quad \sum_{k} K_{k}^{+} K_{k}=\mathbb{I} .
$$

${ }^{2}$ R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., 40, 5681-5693 (2007).

KRAUS MAPS

Kraus map Φ - most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_{T}$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_{K} \geq 0$;
- Trace preserving, i.e., $\operatorname{Tr} \Phi(\rho)=\operatorname{Tr} \rho$.

Kraus operator-sum representation:

$$
\Phi(\rho)=\sum_{k} K_{k} \rho K_{k}^{+}, \quad \sum_{k} K_{k}^{+} K_{k}=\mathbb{I} .
$$

For any target state ρ_{f}, there exist a universally optimal Kraus $\operatorname{map} \Phi_{\rho_{\mathrm{f}}}$ such that for any $\rho: \Phi_{\rho_{\mathrm{f}}}(\rho)=\rho_{\mathrm{f}} .{ }^{2}$
${ }^{2}$ R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., 40, 5681-5693 (2007).

INCOHERENT CONTROL

General method for coherent and incoherent control of open quantum systems was developed ${ }^{3}$:

$$
\frac{d \rho_{t}}{d t}=-\frac{i}{\hbar}\left[H_{u(t)}, \rho_{t}\right]+\mathcal{L}_{n(t)}\left(\rho_{t}\right)
$$

Here u is coherent (e.g., laser field) and n is incoherent (e.g., temperature distribution) control.
${ }^{3}$ A. Pechen and H. Rabitz, "Teaching the environment to control quantum systems", Phys. Rev. A. 73, 062102 (2006).

INCOHERENT CONTROL

General method for coherent and incoherent control of open quantum systems was developed ${ }^{3}$:

$$
\frac{d \rho_{t}}{d t}=-\frac{i}{\hbar}\left[H_{u(t)}, \rho_{t}\right]+\mathcal{L}_{n(t)}\left(\rho_{t}\right)
$$

Here u is coherent (e.g., laser field) and n is incoherent (e.g., temperature distribution) control.

Kraus map:

$$
\rho_{0} \rightarrow \rho_{T}=\Phi_{(u, n)}\left(\rho_{0}\right)=\sum_{k} K_{k} \rho_{0} K_{k}^{+} .
$$

${ }^{3}$ A. Pechen and H. Rabitz, "Teaching the environment to control quantum systems", Phys. Rev. A. 73, 062102 (2006).

COMPLETE CONTROLLABILITY

Our general approach with coherent and incoherent controls was used to show ${ }^{4}$ that for a generic N-level quantum system (for any N), there exist coherent u and incoherent n controls, which approximately steer any initial state to any predefined target state for any N-level system. In other words, open quantum systems are approximately controllable in the set of all density matrices. Allows to construct universally optimal Kraus maps.

An example with two levels of calcium atom: moving from the point $(0,0,-1)$ to the point $(0,0,0.5)$ in the Bloch ball. Two stages of the control:

1) using only incoherent control;
2) using only coherent control.

https://arxiv_org/abs/1210.2281
${ }^{4}$ A. Pechen, "Engineering arbitrary pure and mixed quantum states", Phys. Rev. A. 84, 042106 (2011). (arXiv:1210.2281 [quant-ph])

CONTROL BY QUANTUM MEASUREMENTS

- Belavkin (1983): Theory of controlling quantum systems measured in discrete or continuous time; Wiseman, Milburn (1990): Feedback control. Balachandran, Roy (2000): Quantum anti-Zeno effect.
- Pechen, Ilyn, Shuang, Rabitz (2006): ${ }^{5}$ General method Optimal control by non-selective quantum measurements. Exact analytical solution for a qubit by n measurements:

$$
\begin{aligned}
Q_{i} & =\left\{P_{i}\right\}, \quad \mathcal{M}_{Q}(\rho)=\sum_{i} P_{i} \rho P_{i} \\
J & =\operatorname{Tr}\left[O \mathcal{M}_{Q_{n}} \ldots \mathcal{M}_{Q_{1}}(\rho)\right]
\end{aligned}
$$

Number of measurements

Applied by ${ }^{6}$
${ }^{5}$ A. Pechen, N. II'in, F. Shuang, H. Rabitz, "Quantum control by von Neumann measurements", Phys. Rev. A, 74, 052102 (2006).
${ }^{6}$ M. S. Blok et al, Nature Physics 10, 189 (2014); H. W. Wiseman, Quantum control: Squinting at quantum systems, Nature 470, 178 (2011); etc.

DIGITIZED QUANTUM CONTROL

DISCRETE CONTROLS: In experiments we always have access to a finite number N of controls.

[^0]
DIGITIZED QUANTUM CONTROL

DISCRETE CONTROLS: In experiments we always have access to a finite number N of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and observational numerical data are rational numbers. ${ }^{7}\left(O, \rho_{0}, K_{i, j}\right)$

[^1]
DIGITIZED QUANTUM CONTROL

DISCRETE CONTROLS: In experiments we always have access to a finite number N of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and observational numerical data are rational numbers. ${ }^{7}\left(O, \rho_{0}, K_{i, j}\right)$
N elementary controls are most generally described by Kraus maps

$$
\Phi_{i}(\rho)=\sum_{k} K_{i, k} \rho K_{i, k}^{\dagger}, \quad \sum_{k} K_{i, k}^{\dagger} K_{i, k}=\mathbb{I}
$$

DQC is to find a control policy (if it exists) $\mathbf{p}=\left(p_{1}, \ldots, p_{L}\right) \in A P$ (the set of accessible controls) such that

$$
\mathcal{F}(\mathbf{p}):=\operatorname{Tr}\left[O \Phi_{p_{L}} \ldots \Phi_{p_{1}}\left(\rho_{0}\right)\right]=0
$$

${ }^{7}$ I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. 2, 77-87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal. Annl a (2) 87-121 (0017)

DQC TO DIOPHANTINE EQUATIONS

Define

$$
\hat{\phi}_{k}(i)=\sum_{l=1}^{N} K_{l, k} \prod_{j=1, j \neq l}^{N} \frac{i-j}{I-j} \text { such that } \hat{\phi}_{k}(i)=K_{i, k} \text { for } 1 \leq i \leq N
$$

Then

$$
\mathcal{F}(\mathbf{p}) \rightarrow \mathscr{F}(\mathbf{p})=\sum_{k_{1}, \ldots, k_{P}} \operatorname{Tr}\left(O\left[\prod_{l=L}^{1} \hat{\phi}_{k_{l}}\left(p_{l}\right)\right] \rho_{0}\left[\prod_{m=L}^{1} \hat{\phi}_{k_{m}}\left(p_{m}\right)\right]^{\dagger}\right)
$$

Solving the DQC is equivalent to solving the Diophantine equation:

$$
\mathscr{F}^{2}(\mathbf{p})+\prod_{\mathbf{p}^{\prime} \in A C} \sum_{k=1}^{L}\left(p_{k}-p_{k}^{\prime}\right)^{2}=0
$$

DIOPHANTINE EQUATIONS TO DQC

$$
D\left(x_{1}, \ldots, x_{n}\right)=0 \Rightarrow\left\{\begin{array}{l}
\rho_{0}=|0, \ldots, 0\rangle\langle 0, \ldots, 0| \\
\Phi_{i}(\rho)=\hat{D}_{i} \rho \hat{D}_{i}^{+}, \quad \hat{D}_{i}=\mathrm{e}^{\mathrm{a}_{i}^{+}-a_{i}} \\
\hat{O}=-D\left(a_{1}, \ldots, a_{n}\right)^{+} D\left(a_{1}, \ldots, a_{n}\right)
\end{array}\right.
$$

Hilbert's 10th problem implies unsolvability of DQC!

EXAMPLE: NP-HARD TWO-BOSON PROBLEM

Deciding the solvability of the Diophantine equation

$$
\alpha x_{1}^{2}+\beta x_{2}=\gamma
$$

with respect to x_{1} and x_{2} is NP-hard.

Hence NP-hard to find a 2-mode state such that $\langle\hat{O}\rangle=0$ with

$$
\hat{O}=-\left(\alpha \hat{a}_{1}^{+} \hat{a}_{1}^{+}+\beta \hat{a}_{2}^{+}-\gamma\right)\left(\alpha \hat{a}_{1} \hat{a}_{1}+\beta \hat{a}_{2}-\gamma\right)
$$

CONCLUSIONS

The negative answer to Hilbert's 10th problem implies that there is no algorithm deciding whether there is a control policy for connecting any given pair of quantum states or, more generally, maximizing expectation of an observable.

D.I. Bondar, A.N. Pechen, Uncomputability and complexity of quantum control, arXiv:1907.10082

[^0]: ${ }^{7}$ I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. 2, 77-87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal. Annl 0 (2) 87-121 (2017)

[^1]: ${ }^{7}$ I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. 2, 77-87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal. Annl 0 (2) 87-121 (2017)

