UNCOMPUTABILITY AND COMPLEXITY OF QUANTUM CONTROL

Alexander PECHEN Steklov Mathematical Institute & MISiS (Joint work with Denis BONDAR, Tulane University, USA)

Moscow State University, 05 November 2019

D.I. Bondar, A.N. Pechen, Uncomputability and complexity of quantum control, arXiv:1907.10082

STRUCTURE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

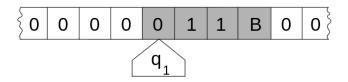
- (Un)computability
- Diophantine equations
- Quantum control: overview
- Digitizes quantum control
- Result

ALGORITHMS

Muhammad ibn Musa al-Khwarizmi (780–850)

(日)、

TURING MACHINE¹



¹A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 2, 42 (1), pp. 230–65 (1936) (published 1937).)

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.

Theorem: The HP is undecidable over Turing machines.

Undecidable problem is a decision problem for which there is no algorithm (TM) hat always gives an yes-or-no answer.

The halting problem: determine, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.

Theorem: The HP is undecidable over Turing machines.

"Proof"

- $T_1, T_2, \ldots, -$ algorithms which have as input and output natural numbers.
- Suppose there exist algorithm A(N, X):
 - halts and returns 1 if $T_N(X)$ does not halt
 - does not halt otherwise
- Then D(N) = A(N, N) halts iff $T_N(N)$ does not halt.

• $D = T_K : D(K) = A(K, K)$ halts if D(K) does not halt. Contradiction!

DIOPHANTINE EQUATIONS

Diophantine equations are polynomial equations with *integer* coefficients and *integer* solutions:

$$D(x_1,\ldots,x_n)=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DIOPHANTINE EQUATIONS

Diophantine equations are polynomial equations with *integer* coefficients and *integer* solutions:

$$D(x_1,\ldots,x_n)=0$$

Examples:

- $x^2 ny^2 = 1$ (Pell's eq.): (1,0) and $(x, y) : x/y \sim \sqrt{n}$
- $x^2 + y^2 = z^2$ (Pythagorean triples): (3,4,5), (5,12,13), ...
- $x^n + y^n = z^n$ for n > 2 (Fermat's Last Theorem): not solvable

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NO!

HILBERT'S 10TH PROBLEM

Find an algorithm which can determine whether a given Diophantine equation is solvable.

NO! (Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam)

UNCOMPUTABLE PROBLEMS IN QUANTUM PHYSICS

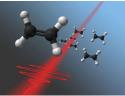
Diophantine equation $D(x_1, \ldots, x_n) = 0$ has a solution iff *n*-boson's Hamiltonian $\hat{H} = D(a_1^+a_1, \ldots, a_n^+a_n)$ has the zero ground state. [T.D. Kieu, Int. J. Theor. Phys. 42, 1461 (2003).]

Hilbert's 10th problem \longrightarrow The ground state of *n*-bosons is uncomputable [W. D. Smith, App. Math. Comp. 178, 184 (2006)]

Whether a quantum system is gapless is not decidable [T. S. Cubitt et al, Nature 528, 207 (2015)].

(日) (同) (三) (三) (三) (○) (○)

QUANTUM CONTROL OVERVIEW



 $H = H_0 + u(t)V, \qquad P_{i
ightarrow f}(u)
ightarrow \max$

1980th: V. Belavkin, A. Butkovskiy, P. Brumer, H. Rabitz, S. Rice, Y. Samoilenko, M. Shapiro, D. Tannor, etc.

Now: Extremely high interest. Applications:

- Quantum computing
- Quantum information
- Laser-assisted chemistry, NMR.

Nobel Prize in Physics 2012: S. Haroche and D. Wineland for experimental manipulation of individual quantum systems.

TYPICAL CONTROL TASKS

State-to-state transfer:

$$\psi_{i} \xrightarrow{u(t)} \psi_{f}, \qquad P_{i \to f} = |\langle \psi_{f}, U_{T} \psi_{i} \rangle|^{2} \to \max$$

 $\langle \hat{O}_{T} \rangle = \operatorname{Tr} \Big[\hat{O} U_{T} \rho_{i} U_{T}^{\dagger} \Big] \to \max$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TYPICAL CONTROL TASKS

State-to-state transfer:

$$\psi_{i} \xrightarrow{u(t)} \psi_{f}, \qquad P_{i \to f} = |\langle \psi_{f}, U_{T} \psi_{i} \rangle|^{2} \to \max$$

 $\langle \hat{O}_{T} \rangle = \operatorname{Tr} \left[\hat{O} U_{T} \rho_{i} U_{T}^{\dagger} \right] \to \max$

Quantum gate/process generation:

$$\mathbb{I} \xrightarrow{u(t)} W, \qquad |\mathrm{Tr} W^{\dagger} U_{\mathcal{T}}| \to \max$$

Examples: W = CNOT, SWAP, Toffoli, ...

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$\frac{d\rho_t^u}{dt} = -i[H_0 + u(t)V, \rho_t^u] + \mathcal{L}(\rho_t^u), \qquad \rho_{t=0}^u = \rho_0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$\frac{d\rho_t^u}{dt} = -i[H_0 + u(t)V, \rho_t^u] + \mathcal{L}(\rho_t^u), \qquad \rho_{t=0}^u = \rho_0$$

Control space \mathcal{U} : E.g., finite energy controls, $u \in \mathcal{U} = L^2([0, T]; \mathbb{R})$

QUANTUM CONTROL: STANDARD FORMULATION

Dynamics:

$$\frac{d\rho_t^u}{dt} = -i[H_0 + u(t)V, \rho_t^u] + \mathcal{L}(\rho_t^u), \qquad \rho_{t=0}^u = \rho_0$$

Control space \mathcal{U} : E.g., finite energy controls, $u \in \mathcal{U} = L^2([0, T]; \mathbb{R})$

Objective functional:

$${\mathscr F}_O(u) \;\;=\;\; {
m Tr}[{\mathcal O}
ho^u_T] o {
m max}$$

COHERENT CONTROL AND CONTROLLABILITY

Coherent control

$$\frac{d|\psi_t\rangle}{dt} = -\frac{i}{\hbar} \Big(H_0 + u(t) V \Big) |\psi_t\rangle$$

Controllability

$$|\psi_{\rm i}\rangle \xrightarrow{u(t)} |\psi_{\rm f}\rangle = U_T |\psi_{\rm i}\rangle$$

Controllability criteria:

$$\operatorname{Lie}\{-iH_0,-iV\}\sim\mathfrak{su}(n) \ (\mathrm{or} \ \mathfrak{sp}(n/2))$$

KRAUS MAPS

Kraus map Φ — most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_T$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_K \ge 0$;
- Trace preserving, i.e., $Tr\Phi(\rho) = Tr\rho$.

²R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., **40**, 5681–5693 (2007).

KRAUS MAPS

Kraus map Φ — most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_T$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_K \ge 0$;
- Trace preserving, i.e., $Tr\Phi(\rho) = Tr\rho$.

Kraus operator-sum representation:

$$\Phi(\rho) = \sum_{k} K_k \rho K_k^+, \qquad \sum_{k} K_k^+ K_k = \mathbb{I}.$$

²R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., **40**, 5681–5693 (2007).

KRAUS MAPS

Kraus map Φ — most general transformation of density matrix:

- Linear map $\Phi: \rho \rightarrow \rho_T$;
- Completely positive, i.e., $\Phi \otimes \mathbb{I}_{\mathcal{K}} \geq 0$;
- Trace preserving, i.e., $Tr\Phi(\rho) = Tr\rho$.

Kraus operator-sum representation:

$$\Phi(\rho) = \sum_{k} K_k \rho K_k^+, \qquad \sum_{k} K_k^+ K_k = \mathbb{I}.$$

For any target state $\rho_{\rm f}$, there exist a universally optimal Kraus map $\Phi_{\rho_{\rm f}}$ such that for any ρ : $\Phi_{\rho_{\rm f}}(\rho) = \rho_{\rm f}$.²

²R. Wu, A. Pechen, C. Brif, H. Rabitz, "Controllability of open quantum systems with Kraus-map dynamics", J. Phys. A: Math. Theor., **40**, 5681–5693 (2007).

INCOHERENT CONTROL

General method for coherent and incoherent control of open quantum systems was developed³:

$$\frac{d\rho_t}{dt} = -\frac{i}{\hbar}[H_{u(t)}, \rho_t] + \mathcal{L}_{n(t)}(\rho_t),$$

Here u is coherent (e.g., laser field) and n is incoherent (e.g., temperature distribution) control.

³A. Pechen and H. Rabitz, "Teaching the environment to control quantum systems", Phys. Rev. A. **73**, 062102 (2006).

INCOHERENT CONTROL

General method for coherent and incoherent control of open quantum systems was developed³:

$$\frac{d\rho_t}{dt} = -\frac{i}{\hbar}[H_{u(t)}, \rho_t] + \mathcal{L}_{n(t)}(\rho_t),$$

Here u is coherent (e.g., laser field) and n is incoherent (e.g., temperature distribution) control.

Kraus map:

$$\rho_0 \rightarrow \rho_T = \Phi_{(u,n)}(\rho_0) = \sum_k K_k \rho_0 K_k^+.$$

³A. Pechen and H. Rabitz, "Teaching the environment to control quantum systems", Phys. Rev. A. **73**, 062102 (2006).

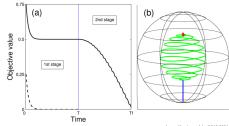
COMPLETE CONTROLLABILITY

Our general approach with coherent and incoherent controls was used to show⁴ that for a generic *N*-level quantum system (for any *N*), there exist coherent u and incoherent n controls, which approximately steer **any initial state to any predefined target state for any** *N*-level system. In other words, open quantum systems are **approximately controllable in the set of all density matrices.** Allows to construct universally optimal Kraus maps.

An example with two levels of calcium atom: moving from the point (0, 0, -1) to the point (0, 0, 0.5) in the Bloch ball. Two stages of the control:

1) using only incoherent control;

2) using only coherent control.



https://arxiv.org/abs/1210.2281

⁴A. Pechen, "Engineering arbitrary pure and mixed quantum states", Phys. Rev. A. **84**, 042106 (2011). (arXiv:1210.2281 [quant-ph])

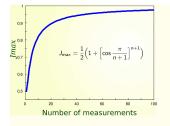
CONTROL BY QUANTUM MEASUREMENTS

- Belavkin (1983): Theory of controlling quantum systems measured in discrete or continuous time; Wiseman, Milburn (1990): Feedback control. Balachandran, Roy (2000): Quantum anti-Zeno effect.
- Pechen, Ilyn, Shuang, Rabitz (2006):⁵ General method

Optimal control by non-selective quantum measurements. Exact analytical solution for a qubit by n measurements:

$$Q_i = \{P_i\}, \quad \mathcal{M}_Q(\rho) = \sum_i P_i \rho P_i$$

$$J = \mathrm{Tr}[\mathcal{OM}_{\mathcal{Q}_n} \dots \mathcal{M}_{\mathcal{Q}_1}(\rho)]$$



Applied by⁶

⁵A. Pechen, N. Il'in, F. Shuang, H. Rabitz, "Quantum control by von Neumann measurements", Phys. Rev. A, **74**, 052102 (2006).

⁶M. S. Blok et al, Nature Physics **10**, 189 (2014); H. W. Wiseman, Quantum control: Squinting at quantum systems, Nature **470**, 178 (2011); etc.

DIGITIZED QUANTUM CONTROL DISCRETE CONTROLS: In experiments we always have access to a finite number *N* of controls.

⁷I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. **2**, 77–87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal.

DIGITIZED QUANTUM CONTROL DISCRETE CONTROLS: In experiments we always have access to a finite number *N* of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and observational numerical data are rational numbers.⁷ $(O, \rho_0, K_{i,i})$

⁷I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. **2**, 77–87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal. Appl. **9** (2), 87–121 (2017)

DIGITIZED QUANTUM CONTROL DISCRETE CONTROLS: In experiments we always have access to a finite number *N* of controls.

RATIONAL NUMBERS IN PHYSICS: All experimental and observational numerical data are rational numbers.⁷ $(O, \rho_0, K_{i,j})$

 ${\it N}$ elementary controls are most generally described by Kraus maps

$$\Phi_i(
ho) = \sum_k K_{i,k}
ho K_{i,k}^{\dagger}, \qquad \sum_k K_{i,k}^{\dagger} K_{i,k} = \mathbb{I}$$

DQC is to find a control policy (if it exists) $\mathbf{p} = (p_1, \dots, p_L) \in AP$ (the set of accessible controls) such that

$$\mathcal{F}(\mathbf{p}) := \operatorname{Tr}[O\Phi_{\rho_L}\dots\Phi_{\rho_1}(\rho_0)] = 0$$

⁷I.V. Volovich, Number Theory as the Ultimate Physical Theory, p-Adic Numbers, Ultrametric Analysis and Applications. **2**, 77–87 (2010); B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic Mathematical Physics: The First 30 Years, p-Adic Numbers Ultrametric Anal. Appl. **9** (2), 87–121 (2017)

DQC TO DIOPHANTINE EQUATIONS

Define

$$\hat{\phi}_k(i) = \sum_{l=1}^N K_{l,k} \prod_{j=1, j \neq l}^N \frac{i-j}{l-j} \text{ such that } \hat{\phi}_k(i) = K_{i,k} \text{ for } 1 \le i \le N$$

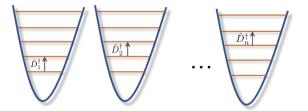
Then

$$\mathcal{F}(\mathbf{p}) \to \mathscr{F}(\mathbf{p}) = \sum_{k_1, \dots, k_p} \operatorname{Tr} \left(O\left[\prod_{l=L}^1 \hat{\phi}_{k_l}(p_l) \right] \rho_0 \left[\prod_{m=L}^1 \hat{\phi}_{k_m}(p_m) \right]^\dagger \right)$$

Solving the DQC is equivalent to solving the Diophantine equation: $\mathscr{F}^2(\mathbf{p}) + \prod_{\mathbf{p}' \in AC} \sum_{k=1}^L (p_k - p_k')^2 = 0$

DIOPHANTINE EQUATIONS TO DQC

$$D(x_1,\ldots,x_n) = 0 \Rightarrow \begin{cases} \rho_0 = |0,\ldots,0\rangle\langle 0,\ldots,0| \\ \Phi_i(\rho) = \hat{D}_i\rho\hat{D}_i^+, \quad \hat{D}_i = e^{a_i^+ - a_i} \\ \hat{O} = -D(a_1,\ldots,a_n)^+D(a_1,\ldots,a_n) \end{cases}$$



Hilbert's 10th problem implies unsolvability of DQC!

EXAMPLE: NP-HARD TWO-BOSON PROBLEM

Deciding the solvability of the Diophantine equation

$$\alpha x_1^2 + \beta x_2 = \gamma$$

with respect to x_1 and x_2 is NP-hard.

Hence NP-hard to find a 2-mode state such that $\langle \hat{O} \rangle = 0$ with $\hat{O} = -(\alpha \hat{a}_1^+ \hat{a}_1^+ + \beta \hat{a}_2^+ - \gamma)(\alpha \hat{a}_1 \hat{a}_1 + \beta \hat{a}_2 - \gamma)$

CONCLUSIONS

The negative answer to Hilbert's 10th problem implies that there is no algorithm deciding whether there is a control policy for connecting any given pair of quantum states or, more generally, maximizing expectation of an observable.

$$\psi_{i} \xrightarrow{DQC?} \psi_{f}$$

D.I. Bondar, A.N. Pechen, Uncomputability and complexity of quantum control, arXiv:1907.10082