

Linear optical platform for quantum computing in Quantum technology centre

Founded in 2017
Research areas:

- quantum
communication
- quantum computing
- atomic physics
- quantum optics
- integrated photonics
- nanophotonics and metamaterials
- single-electron physics

Near-term architecture

Long-term architecture

BLUEPRINT

Initial resource

Fusion gates

Boosted ty pe-II fusion gate with single-photon ancillae

3D cluster in space and time
Cone slice

Connection to the previous time slice

TE Linear optical quantum computing

BLUEPRINT

Initial resource

Fusion gates

Boosted ty pe-II fusion gate with single-photon ancillae

3D cluster in space and time
\rightarrow Connection to the next time slice

Connection to the previous time slice

- single-photon source + entangling gates

Or

- entangled photon source

BLUEPRINT

Initial resource

Fusion gates

Boosted type-II fusion gate with single-photon ancillae

3D cluster in space and time
Con Connection to the next time slice

Connection to the previous time slice

- single-photon source + entangling gates

Or

- entangled photon source
- optical circuitry
- photon-number resolving detectors

BLUEPRINT

Initial resource

Fusion gates

Boosted type-II fusion gate with single-photon ancillae

3D cluster in space and time
\rightarrow Connection to the next time slice

Connection to the previous time slice

- single-photon source + entangling gates

Or

- entangled photon source
- optical circuitry
- photon-number resolving detectors
- low-loss delay lines

BLUEPRINT

Initial resource

Fusion gates

Boosted type-II fusion gate with single-photon ancillae

3D cluster in space and time
\longrightarrow Connection to the next time slice

Connection to the previous time slice

- single-photon source + entangling gates
or
- entangled photon source
- optical circuitry
- photon-number resolving detectors
- low-loss delay lines
- high-speed electronics
- fast optical switches

Our lab

Optical circuits

- design
- technology
- femtosecond laser writing
- lithography

Detectors
Installed 24 SNSPDs

Sources

- Quandela QD source
- 10-channel demux
- 6-photon SPDC

Theory

- Heralded gate optimization

Our lab

Optical circuits

- design
- technology
- femtosecond laser writing
- lithography

Detectors
Installed 24 SNSPDs

Sources

- Quandela QD source
- 10-channel demux
- 6-photon SPDC

Theory

- Heralded gate optimization

OPTICAL CIRCUITS. TECHNOLOGY

FMN Laboratory

Bauman Moscow State Technical University fmn.bmstu.ru/en

Optical circuits fabrication

- Silicon nitride SM waveguides < 1 dB/cm @ 925 nm
- Grating couplers
< 5 dB @ 925 nm, TE, 0 deg
- Edge couplers
< 3 dB @ 925 nm

多
 Advanced Nanofabrication

SiN integrated photonics

- Directional couplers loss below 0.2 dB
- Y-splitters loss below 0.2 dB
- Thermo-optically tunable phase shifters

Optical circuits. FSLW

1,
Femtosecond laser writing

- Waveguides

Parameter map

Characteristics

- Propagation loss - $0.2 \mathrm{~dB} / \mathrm{cm}$
- Coupling loss - 1 dB per facet (SMF @ 808 nm)
- Bending loss:
- $0.1 \mathrm{~dB} / \mathrm{cm}$ (50 mm radius)
- $0.8 \mathrm{~dB} / \mathrm{cm}$ (80 mm radius)

4×4 universal linear circuit

Device tuning

Problems: large thermal crosstalk and imperfect couplers
Tuning procedure:

1. Generate the output distribution $\left\{\tilde{S}_{j}\right\}, \sum \tilde{S}_{j}=1$
2. Measure output intensities I_{j} on each step
3. Subtract the background and normalize

$$
S_{j}=\frac{I_{j}-I_{b g}}{\sum\left(I_{j}-I_{b g}\right)}
$$

4. Adjust the phases in order to minimize

$$
1-F=1-\left(\sum \sqrt{S_{j} \tilde{S}_{j}}\right)^{2}
$$

I.V. Dyakonov et al. Phys. Rev. Applied 10, 044048 (2018)

Two-qubit gate

	00	01	10	11
00	0.0033	0.1258	0	0
01	0.1102	0.03	0	0
10	0	0	0.1048	0.0201
11	0	0	0.0365	0.1042

Truth table fidelity - 96\% Unitary fidelity - 98\%

He Current work

Error-tolerant v1	d_Int $=6.34 \mathrm{um}$
Single 10 cm chip	bs_length $=6.161 \mathrm{~mm}$
Electrode layout v1	56 electrodes

Summary

Femtosecond laser writing:

- Propagation loss < 1 dB/cm
- Thermooptical switching time $\approx 10 \mathrm{~ms}$
- Tens of heaters on a single chip

Lithography:

- Low-loss SiN platform
- Low-loss coupling elements

OPTICAL CIRCUITS. DESIGN

Unitary design

How to design the interferometer covering the whole unitary space?

How to design the unitary for a specific gate with maximal probability of successful operation?

The goal

Find architecture of the reconfigurable interferometer covering the whole unitary space and tolerating high fabrication errors

Such architecture may find application in tasks like VQE or QAOA when no particular gate set is required but the unitary space covering must be close to complete

- Map the unitary to the device

Reck scheme

Clements scheme
c $T_{m, n}(\theta, \phi)=\square=\begin{aligned} & \text { Gesellschaft der Wissenschaften zu } \\ & \text { Gottingen, Mathematisch-Physikalische }\end{aligned}$
Picture from W.R. Clements et al. Optica 3, 12 (2016)

Clements scheme

I - the beamsplitters are all biased with a same randomly chosen angle from the [$0, \pi / 9$] range.

II - the beamsplitters are independently biased by a random angle from the [$0, \pi / 9$] degree range.

III - the beamsplitters are independently imbalanced by a random angle from $[-\pi / 9, \pi / 9]$ degree range.

Optimization

1. Haar random unitaries are generated using the QRdecomposition algorithm
2. The tested circuit parameters are fitted to match the resulting unitary of the circuit to the sampled one
3. The figure of merit $\quad \mathrm{F}=\frac{1}{\mathrm{~N}^{2}}\left|\operatorname{Tr}\left(\mathbf{U U}_{\mathrm{s}}\right)\right|^{2}$
4. The fidelity histogram evidences if the circuit is capable of reaching any given unitary with particular precision

$$
\Lambda=\Phi^{(K+1)} V^{(K)} \Phi^{(K)} \ldots V^{(1)} \Phi^{(1)}-\begin{aligned}
& \text { unitary matrix of the } \\
& \text { interferometer }
\end{aligned}
$$

Saygin et al. Phys. Rev. Lett. 124, 010501 (2020)

-18 Beamsplitter mesh

Tㅏ Beamsplitter mesh

b)

Beamsplitter mesh

We have developed circuit architectures prone for implementing random unitaries prone to reasonably high level of fabrication imperfection

THEORY. GATE OPTIMIZATION

Dual-rail information encoding

The gate is implemented by a specific unitary transformation Λ with a success probability $p<1$.

Fock state transformation

The matrix Λ describes the mode transformation:

$$
\hat{a}_{j}^{\text {out }^{\dagger}} \rightarrow \Lambda_{i j} \hat{a}_{j}^{\text {in }}{ }^{\dagger}
$$

where Λ is a $M \times M$ unitary matrix, $M=M_{c}+M_{a}+M_{v}$.

The input state:

$$
\left|\Psi^{i n}\right\rangle=\left|n_{1}^{c} n_{2}^{c} \ldots n_{M_{c}}^{c}\right\rangle\left|n_{1}^{a} n_{2}^{a} \ldots n_{M_{a}}^{a}\right\rangle|v a c\rangle .
$$

The dimension of the system

$$
\operatorname{dim} H_{M}^{N}=\binom{N+M-1}{N}
$$

where $N=N_{c}+N_{a}$.

Fock state transformation

The output state:

$$
\left|\Psi^{\text {out }}\right\rangle=\Omega(\Lambda)\left|\Psi^{\text {in }}\right\rangle=\prod_{i=1}^{M} \frac{1}{\sqrt{n_{i}!}}\left(\sum_{j=1}^{M} \Lambda_{i j} \hat{a}_{j}^{\dagger}\right)^{n_{i}}
$$

The state of the computational subsystem after the photocounting measurement applied to $M-M_{C}$ ancilla and vacuum modes:

$$
\begin{gathered}
A(\Lambda)\left|\Psi^{\text {in }}\right\rangle=\left\langle k_{M_{C}+1}, k_{M_{C}+2}, \ldots, k_{M}\right| \Omega(\Lambda)\left|\Psi^{\text {in }}\right\rangle \\
\left|\Psi_{C}^{\text {out }}\right\rangle=\frac{A\left|\Psi^{\text {in }}\right\rangle}{\| A\left|\Psi^{\text {in }}\right\rangle \|}
\end{gathered}
$$

The operator A contains all the information about the gate or the state of the computational subsystem on the output.

The output state is represented by a polynomial in the creation operators:

$$
\left|\Psi^{\text {out }}\right\rangle=F\left(\hat{a}_{1}^{\dagger}, \hat{a}_{2}^{\dagger}, \ldots, \hat{a}_{M}^{\dagger}\right)|v a c\rangle=\prod_{i=1}^{M} \frac{1}{\sqrt{n_{i}!}}\left(\sum_{j=1}^{M} \Lambda_{i j} \hat{a}_{j}^{\dagger}\right)^{n_{i}} .
$$

The ancilla state is a monomial:

$$
\left|\Psi^{\text {anc }}\right\rangle=\left|k_{M_{c}+1}, k_{M_{c}+2}, \ldots, k_{M_{c}+M_{a}}\right\rangle=\prod_{i=M_{c}+1}^{M_{c}+M_{a}} \frac{1}{\sqrt{n_{i}!}} \hat{a}_{j}^{n_{i}}
$$

The heralded state $\left|\Psi^{\text {her }}\right\rangle=\left\langle\Psi^{a n c} \mid \Psi^{o u t}\right\rangle$ is again a polynomial:

$$
\left|\Psi^{\text {out }}\right\rangle=G\left(\hat{a}_{1}^{\dagger}, \hat{a}_{2}^{\dagger}, \ldots, \hat{a}_{M_{c}}^{\dagger}\right)|v a c\rangle .
$$

The target state:

$$
\left|\Psi^{\operatorname{tar}}\right\rangle=Q\left(\hat{a}_{1}^{\dagger}, \hat{a}_{2}^{\dagger}, \ldots, \hat{a}_{M_{c}}^{\dagger}\right)|v a c\rangle
$$

The problem target state generation with probability $|\alpha|^{2}$ is equivalent to a polynomial equation

$$
G=\alpha Q
$$

which in turn is a system of polynomial equations

$$
\left\{\begin{array}{c}
\operatorname{poly}_{1}\left(\Lambda_{11}, \Lambda_{12}, \ldots, \Lambda_{N N}, \alpha\right)=0 \\
\operatorname{poly}_{K}\left(\Lambda_{11}, \Lambda_{12}, \ldots, \Lambda_{N N}, \alpha\right)=0
\end{array}\right.
$$

Solution can be found using Groebner basis, which can be computed by the Buchberger algorithm - EXPSPACE complexity.

Optimization approach

Construct a cost function, including the success probability and fidelity and minimize it.

Target state

Example:

$$
f=-\sum_{\left\{\Psi^{\text {anc }}\right\}} P\left(\Psi^{a n c}, \Lambda\right) \sum_{\left\{\Psi^{t a r}\right\}}\left|\left\langle\Psi^{\operatorname{tar}} \mid \Psi^{a n c}\right\rangle\right|^{10}
$$

Two-qubit Bell states (written in the Fock basis):

$$
\begin{aligned}
& \Psi_{1,2}^{t a r}=\frac{1}{\sqrt{2}}(|1010\rangle \pm|0101\rangle) \\
& \Psi_{3,4}^{t a r}=\frac{1}{\sqrt{2}}(|1001\rangle \pm|0110\rangle) \\
& \Psi_{5,6}^{t a r}=\frac{1}{\sqrt{2}}(|1100\rangle \pm|0011\rangle)
\end{aligned}
$$

Target gate

Find $\hat{A}=\alpha \hat{A}^{\text {tar }}$, where $|\alpha|^{2}$ - gate success probability.

Hilbert-Schmidt distance (or any other distance measure in the unitary space):

$$
F(\Lambda)=\frac{\left\langle\hat{A} \mid \hat{A}^{\text {tar }}\right\rangle\left\langle\hat{A}^{\text {tar }} \mid \hat{A}\right\rangle}{\langle\hat{A} \mid \hat{A}\rangle\left\langle\hat{A}^{\text {tar }} \mid \hat{A}^{\text {tar }}\right\rangle},
$$

where $\left\langle\hat{A} \mid \hat{A}^{\text {tar }}\right\rangle=\frac{1}{N} \operatorname{Tr}\left(\hat{A}^{\dagger} \hat{A}^{\text {tar }}\right)$.

Three-qubit GHZ states:

$$
\Psi_{1,2,3}^{\operatorname{tar}}=\frac{1}{\sqrt{2}}(|111\rangle \pm|000\rangle)
$$

Three-qubit GHZ states (written in the Fock basis):

$$
\Psi_{1,2,3}^{\operatorname{tar}}=\frac{1}{\sqrt{2}}(|101010\rangle \pm|010101\rangle)
$$

Basic building block in ballistic QC model

The known results

6-photon 10-mode without feedforward - $P=1 / 256$

6-photon 10-mode with feedforward - $P=1 / 32$

Optimization procedure

The main optimization problem:

$$
\begin{gathered}
U=\operatorname{argmax}_{U} \sum_{t, a} P_{a}(U) M_{t, a}^{p} \\
\left.P_{a}(U)=\sum_{m}|\langle m, a| \Omega(U)| \psi_{i n}\right\rangle\left.\right|^{2} \\
\left.M_{t, a}=P_{a}^{-1}|\langle t, a| \Omega(U)| \psi_{i n}\right\rangle\left.\right|^{2}
\end{gathered}
$$

The auxillary optimization problem:

$$
S(U)=\sum_{i}^{\min S(U)}\left\{\left(1-\cos \left[4 \theta_{i}\right]\right)+\varepsilon\left(1-\cos \left[2 \varphi_{i}\right]\right)\right\}+\delta \sum_{i}\left|D_{i}-1\right|^{2}
$$

Success probability: $P=1 / 54$

Ω block circuit:

Success probability:

$$
P=1 / 54
$$

Gubarev et al. arXiv:2004.02691v2 (2020) Accepted to PRA

The software package for numerical calculation of the linear optical transformation.

- Core classes are written in C++
- The code for permanent computation is optimized down to the CPU architecture (permanents up to 35×35 are easily calculated on the laptop)
- Seamless Python wrapper

Github link

