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Paraxial spatial modes

I In polar coordinates {k⊥, φ} =⇒ - Laguerre-Gaussian modes

I In cartesian coordinates {kx , ky} =⇒ - Hermite-Gaussian

modes

Laguerre-Gaussian modes
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I l - topological charge of the beam

I LG beam carries orbital angular
momentum of l~ per photon

Hermite-Gaussian modes
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Phase-only spatial holograms as mode converters

A phase-only SLM is used to display holograms

Options:

I Zeroth order, phase-only modulation

I First order, phase-only modulation

I First order, phase and amplitude modulation
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Higher order HG/LG modes generation

Experimentally obtained far-�eld distributions
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Spatial mode �lter

Idea: "reverse" the generation setup and use same holograms as

�lters
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Spatial mode �lter

Idea: "reverse" the generation setup and use same holograms as

�lters

I.B. Bobrov et al. Optics Express 23, 649 (2015)
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Schmidt mode decomposition

SPDC biphoton state:

|ψ〉 = |vac〉+ const×
∫

~dks ~dkiΨ(~ks , ~ki ) |1〉s |1〉i ,

~ks , ~ki � wavevectors of signal and idler photons

|1〉s , |1〉i � single-photon Fock states of the corresponding modes.

Ψ(~ks⊥ ,
~ki⊥) =

∞∑
n=0

√
λnψn(~ks⊥)χn(~ki⊥).

Schmidt number:

K =
1
∞∑
n=0

λ2n
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Spatial two-photon amplitude

Ψ( ~ks⊥, ~ki⊥) ∝ Ep( ~ks⊥ + ~ki⊥)sinc
(L(~ks⊥ − ~ki⊥)2

4kp

)
.

Ψ( ~ks⊥, ~ki⊥) ∝ exp
(
− a2

(~ks⊥ + ~ki⊥)2

2

)
exp
(
− b2

(~ks⊥ − ~ki⊥)2

2

)
,

K =
(a2 + b2

2ab

)2
,

a � pump beam width

b � phase-matching

bandwidth

C. Law and J. Eberly, Phys. Rev. Lett. 92, 127903 (2004)
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Decomposition in terms of HG modes

I Biphoton wavefunction:

Ψ⊥

(
~k1⊥ ,

~k2⊥

)
∝ E ∗p

(
~k1⊥+~k2⊥

2

)
sinc

[
C
(
~k1⊥ − ~k2⊥

)2]
I Let the pump mode be Hermite-Gaussian:

Ep(kx , ky ) = HGnm(kx , ky ) = HGn(kx)HGm(ky )

HGn(k) ∝
√
wHn(ak) exp(−a2k2

2
)

I Biphoton state may be decomposed as2:

|ψnm〉 =
∑
j ,k,s,t

C
(nm)
jkst |HGjk(k1x , k1y )〉 |HGst(k2x , k2y )〉

2S.P.Walborn and A.H. Pimentel, Journal of Physics 45(16):165502 (2012)
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Hermite-Gaussian pump3, Schmidt number K = 6

3S.P.Walborn and A.H. Pimentel, Journal of Physics 45(16):165502 (2012)
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Hermite-Gaussian pump4, Schmidt number K = 1

4S.P.Walborn and A.H. Pimentel, Journal of Physics 45(16):165502 (2012)
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Hermite-Gaussian pump4, Schmidt number K = 1

4S.P.Walborn and A.H. Pimentel, Journal of Physics 45(16):165502 (2012)
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Experimental setup
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Experimental results: Schmidt number

K =
(w2 + δ2

2wδ

)2
→ β

(w2 + α2δ2

2wαδ

)2 ∗
α = 0.85, β = 1.65

∗F. Miatto, H. Pires, S. Barnett, and M. van Exter, The European
Physical Journal D 66, 1 (2012).
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Results for non-Gaussian pump

Theoretical distributions for |C (0)
nm |2, |C (1)

nm |2, |C (2)
nm |2, |C (3)

nm |2.

Measured distributions for |C (0)
nm |2, |C (1)

nm |2, |C (2)
nm |2, |C (3)

nm |2.
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Spatial Bell state

Measured |C (1)
nm |2 for HG01 pump∣∣Ψ+
〉

=
1√
2

(|HG00,HG01〉+ |HG01,HG00〉)

E.V.Kovlakov et al. Phys. Rev. Lett. 118, 030503 (2017)
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Bell inequalities

Detection modes: |θs,i 〉 = cos(
θs,i
2

) |HG00〉+ sin(
θs,i
2

) |HG01〉
Rc(θs , θi ) ∝ | 〈θs | 〈θi | |Ψ+〉 |2 ∝ sin(θs − θi )
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Measured CHSH inequality violation: S = (2.81± 0.05) > 2.
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Full state tomography in larger space

Fidelity with an ideal Bell state is 0.97

E.V.Kovlakov et al. Phys. Rev. Lett. 118, 030503 (2017)
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Full state tomography in larger space

Fidelity with an ideal Bell state is 0.72

E.V.Kovlakov et al. Phys. Rev. Lett. 118, 030503 (2017)
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OAM-carrying pump beams

OAM-carrying modes LG0l are easier to deal with

Consider a pump beam with Ep = LG0l(ρ, ϕ)

OAM conservation rule: l = ls + li

l = -2 l = 0 l = 2

An idea is to take a superposition of pump modes with di�erent l
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Advanced state engineering techniques

Ep =
∑

l αlLG0l(ρ, ϕ)
Coe�cients are obtained via an optimization procedure

Target state: |ψ〉 = 1√
3

(
e iθ1 |−1,−1〉+ |0, 0〉+ e iθ2 |1, 1〉

)
α−2 = 0.76− 0.11i , α0 = −0.12 + 0.15i , α2 = 0.30− 0.53i
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High-dimensional state engineering

Full control over the state space dimensionality

Central picture corresponds to a "vortex pancake" pump beam

(J.P.Torres et al. Phys. Rev. A 67, 052313 (2003)

E.V.Kovlakov, S.S.Straupe, S.P.Kulik, Phys. Rev. A 98, 060301(R) (2018)

Independent work: S.-L.Liu et al. Phys. Rev. A 98, 062316 (2018)
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Quantum state tomography

State
Preparation Measurement

Statistical
Reconstruction

Settings:

I State: ρ ∈ H: (d2 − 1) real parameters, N copies
I Measurements: Mα : {Mαk :

∑
k

Mαk = 1} � POVM

I Born's rule: P(k |ρ, α) = Tr(Mαkρ) � k-th outcome

probability

I Experimental data: D : {nαk} � outcomes, obtained for the

con�guration α

One should estimate ρ̂ using data D
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How much data do we need?

Fidelity: F (ρ, ρ̂) =
[
Tr
√√

ρρ̂
√
ρ
]2

collective measurements

Ultimate bound for pure states of qubits and collective

measurements (Massar-Popescu):

1− F ≥ 1

N + 2
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How much data do we need?

Fidelity: F (ρ, ρ̂) =
[
Tr
√√

ρρ̂
√
ρ
]2

individual measurements

Ultimate bound for pure states of qubits and individual

measurements (Gill-Massar):

1− F ≥ 9
4N
−1
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Is it possible to achieve the GM bound?

I Fidelity: F (ρ, ρ̂) =
[
Tr
√√

ρρ̂
√
ρ
]2

I In�delity for pure states scales as 1/
√
N for almost all

projective measurments6

6D.H.Mahler, et al. Phys. Rev. Lett. 111, 183601 (2013)
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Adaptive experimental design

adaptive 
feedback

Optimal measurement: αn+1 = argmax
α

∑
γn

p(γn|α)U(α,Dn)
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Adaptive experimental design

adaptive 
feedback

Optimal measurement a:

αn+1 = argmax
α

[
H(πn(ρ|Dn))− Eπn(k|Mα,D) (H [πn+1(ρ|k, α,Dn)])

]
aF. Husz�ar and N. M. T. Houlsby, Phys. Rev. A 85, 052120 (2012)
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Experimental qubit tomography

MUB worst case: 1− F ∼ 1/
√
N

MUB best case (eigenbasis): 1− F ∼ 1/N
Adaptive tomography7 always gives 1− F ∼ 1/N

7K.S.Kravtsov, et al., Phys. Rev. A 87, 062122 (2013)
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Problems with high-dimensional states

A typical setup looks like this:

40
7 

nm

CC

PPKTP PBS
SLM1 SLM3

SLM2

SMF
SMF

L1 L2

D1 D2

I Bipartite scenario: measurements are factorized

M = MA ⊗MB

I Bayesian experimental design is numerically intractable in

high dimensions

We need a simpler approach!
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State-orthogonal measurements

What do all adaptive protocols have in common?

Measurements tend to align with the true state or orthogonal ones

Heuristic: low probability outcomes are of most importance

A measurement M is orthogonal to the state ρ, if
Tr(Mρ) = 0

The protocol should contain measurements M, which are

orthogonal to all eigenvectors |ψk〉 of the true state with nonzero

eigenvalues:

M |ψk〉 = 0
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Gaussian state, D = 9

103 1045×103 5×104

10-2

5×10-3

5×10-2

Number of counts detected N
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r
d
B2

FR

FO

Trρ2 = 0.94

Advantage is ≈ 2.2 times.

FR N−0.502 FO N−0.703

G.I.Struchalin et al. Phys. Rev. A 98, 032330 (2018)

S.S.Straupe High-dimensional spatial states 30 / 43



Bell state, D = 9

103 1045×103 5×104
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Number of counts detected N
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Trρ2 = 0.74

Advantage is ≈ 1.25 times.

FR N−0.507 FO N−0.495

G.I.Struchalin et al. Phys. Rev. A 98, 032330 (2018)
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SPAM errors
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SPAM errors

Probe states and measurements are corrupted by errors
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SPAM errors

We need to recover ¾ideal¿ data to perform reconstruction
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SPAM errors

Neural
network

A feed-forward neural network is trained to perform denoising
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Experiment with OAM of photons

Input Beam
State Preparation

phase mask

amplitude mask

SMF

Single

Photon 

Source

Detector

SMF
State Detection

prepared state

reconstructed state

ra
w

Reconstruction of a 6-dimensional spatial photonic state
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Neural network architecture

36 36

400

200

I Input data: empirical frequencies fγ
I Output: predicted probabilities pγ
I Expected (ideal) probabilities Pγ

The NN is trained to minimize the KL divergence

L =
N∑
i=1

d2∑
γ=1

Pi
γ log

(
Pi
γ

piγ

)
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Reconstruction results: raw vs. processed

Cross-talk between the

projectors leads to �delity

reduction

P i
j = | 〈ϕi | ϕ̃j〉|2

Fidelity distribution for 1000 random states

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

fidelity fidelity

a priori pure state full reconstruction

A.M.Palmieri et al. npj Quantum Information 6, 20 (2020)
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Reconstruction results: raw vs. processed

Even with pre-calibration by

standard process tomography

the NN still performs better!

Fidelity distribution for 1000 random states

fidelity fidelity

a priori pure state full reconstruction

A.M.Palmieri et al. npj Quantum Information 6, 20 (2020)
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The curse of dimensionality

I Full state tomography of a d-dimensional quantum states

requires N ∼ d2 measurements

I This is intractable in high dimensions

Is there any way around this problem?

Yes, if we do not need full information about the state!
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Extracting information from "classical shadows"

What if you only want to estimate some expectation values?

〈Oi 〉 = TrOiρ

It is possible to do with N ∼ log d measurements

S. Aaronson, Proceedings of the 50th Annual ACM SIGACT STOC 2018,
325�338 (2018)

H.-Y. Huang, R. Kueng, arXiv:1908.08909v2 (2019)
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Extracting information from "classical shadows"

Algorithm:

I "Classical shadow of ρ": {(|ψ0〉〈ψ0| , f0), . . . , (|ψN〉〈ψN | , fN)},
where fi = Ni/N are the observed outcome frequencies

I Obtain the linear inversion estimate:

ρ̂ = (d + 1)
∑
i

fi |ψi 〉〈ψi | − I

I Compute the estimate Ôi = TrOi ρ̂

It works given appropriate symmetry in the choice of |ψk〉 (they
should form a 3-design)

H.-Y. Huang, R. Kueng, arXiv:1908.08909v2 (2019)
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Fidelity estimation from experimentally obtained shadow

Let us choose O = |ψ〉〈ψ|
We will obtain an estimate of �delity to a given state

Experimental results for spatial states:

MLE Shadow

G.I.Struchalin et al. In preparation
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Conclusions

I Spatial modes of SPDC photons are a useful tool for

quantum experiments

I We have implemented several ideas to engineer the spatial

entanglement

I One can perform arbitrary projective measurements and do

full state reconstruction in dimensions up to 36

I Feed-forward neural networks may be used for

pre-processing of data in quantum tomography to mitigate the

e�ect of SPAM errors

I Full state tomography is redundant for many purposes and

may be replaced with cleverer resource-saving protocols
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