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Plan of the talk  

 Introduction:  Quantum  metrology  tasks and state of the art ; 

 Quantum metrology  approach in optics  and  atom optics with Bose-
Einstein condensates; 

 Quantum metrology  with condensate solitons; 

 Quantum soliton Josephson Junction  (SJJ) device as a new powerful  tool  
for quantum metrological applications ; 

 Lossy  quantum metrology with solitons,  Quantum Fisher information 
approach; 

 Current  progress in experiment for  quantum metrology with solitons    

 Summary 

 



Quantum metrology: tasks and problems 

The aim of quantum metrology is development of methods and devices to measure 
some physical parameter at the level of fundamental quantum noise limit, determined by  
some uncertainty relations.  

A schematic diagram of 𝝋 parameter measurement and estimation  

The main questions:   

𝑃  
Propagation error is  

𝚫𝝋 =
𝚫𝑷 

𝟐

𝝏 < 𝑷 >
𝝏𝝋

 

1. What is the transformation 𝑈 𝜑  for measurement and estimation of 𝝋   which allows to 
obtain  highest      precision ?  

2. How  we can prepare quantum state of probe to achieve best measurement precision for 𝝋?  
3. What is the most effective scheme of detection   the 𝑃  observable?  



Some historical remarks re  

 J. P. Dowling,  K. P. Seshadreesan, Quantum Optical Technologies for Metrology, Sensing, and Imaging,” J. of 
Lightwave Technology, (2015) 

 L. Pezze, et al, Quantum metrology with non-classical states of atomic ensembles , Rev. Mod. Phys. (2018) 
 C.L. Degen, F. Reinhard, and  P. Cappellaro , Quantum  sensing , Rev. Mod. Phys.  (2017)  

Early Studies – measurement of weak forces  

 V.B. Braginskii, On the Limits Which Determine the Possibility of Measuring Gravitational Effects  JETP (1963) 
 V. B. Braginskii,  Yu. I Vorontsov .   Quantum-mechanical limitations in macroscopic experiments and modern 

experimental technique,  Sov. Phys. Usp. (1975)  
 W. Н. Press , К. S. Thome , Gravitational-Wave Astronomy. Preprint, Caltech,  1972. 
 C.M. Caves, C. M., K.S. Thorne,  et al . On the measurement of a weak classical force coupled to a quantum-

mechanical oscillator.  Rev. Mod. Phys. (1980) 
  D. Wineland,  et al,   Squeezed atomic states and projection noise in spectroscopy,  Phys. Rev. A  (1994) 

Current studies 

Quantum Information approach 

 Vladimir Braginsky 

 S. L. Braunstein,  C. M. Caves, G.J. Milburn,    Annals of Physics (1996) – Quantum  phase estimation  
 Giovannetti, Seth Lloyd, and Lorenzo Maccone, PRL (2006) – Quantum metrology strategies 
 S.  Boixo, Steven T. Flammia, Carlton M. Caves,  JM Geremia,  PRL (2007) – Quantum Nonlinear metrology 
 U. Dorner, R. Demkowicz-Dobrzanski, , et al,  PRL (2009)  - Optimal Quantum Phase Estimation (lossy QM) 

A. Alodjants, S. Arakelian, Grav.  and Cosmology  (1999) – Quantum polarization state exploiting in interferometry    



Sketch on Mach-Zehnder interferometer 

To measure some physical variable one needs to measure precisely the phase-

shift, 𝜑 ≪ 1, in the arms of the interferometer  

 Source of input state 



Interferometry with coherent probe 

𝑵𝑪 + 𝑵𝑫 = 𝑵 

Quantum  phase uncertainty with  
coherent state : 

𝚫𝝋𝑺𝑸𝑳 =
𝟏

𝑵
 

MZ-scheme 

Standard Quantum Limit for 
phase measurement  

𝝋 

Uncertainty relation 

1P

𝑷 = 𝑵𝑪 − 𝑵𝑫 

𝚫𝝋 =
𝚫𝑷

|𝑷/𝝋|
=

𝚫𝑷

𝑰𝑨|𝒔𝒊𝒏 𝝋 | 
=   

𝚫𝑷

𝑰𝑨 
 𝑭𝒐𝒓  𝝋 =

𝝅

𝟐
 

𝚫𝑷 = 𝚫𝑷 
𝟐

= 𝑵 

|𝜶 > 

|𝜶 > 



Metrology with non-classical states 

To measure some physical variable one needs to measure precisely the phase-

shift, 𝜑 ≪ 1, in the arms of the interferometer  



Metrology with noise suppression (GEO600, KAGRA, LIGO, Virgo)  

4 km 

MZ- interferometer with squeezed input 

4 km 

Squeezed vacuum 

LIGO, Michelson interferometer 

Squeezed vacuum 

Roman Schnabel, Physics Reports 684  (2017)  

𝚫𝝋 =
𝟏

𝑵𝟑/𝟒
 

|𝜶 > 

|𝒓 > 

𝒓 ≫ 𝟏  
 

Currently maximal squeezing in Lab is  15dB 

Strain sensitivity of the H1 detector measured with 
and without squeezing injection 
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Linear metrology 

𝑵 – number of particles 

Standard Quantum Limit (SQL),   
with a two-mode  
coherent input state 𝚿  

Heisenberg limit 
with maximally path-entangled 
N00N-state 

Some recent experiments 
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𝑵 𝑨 𝟎 𝑩 + 𝒆𝒊𝝋𝑵 𝟎 𝑨 𝑵 𝑩 

𝟏

𝑵
≤ 𝚫𝝋 ≤

𝟏

𝑵
 

𝑼 𝝋 = 𝒆𝒊𝝋𝑵 
𝚿 𝒊𝒏 𝚿 𝒐𝒖𝒕 

A problem: N00N-state with 𝑵 > 𝟑 are hard to create!  

 Heonoh Kim et al Three-photon N00N states generated by photon subtraction from 

double photon pairs Optics Express 17, 19720 (2009) 

 I. Afek et al High-NOON States by Mixing Quantum and Classical Light Science 328, 

879 (2010)  

 L. A. Rozema et al Scalable Spatial Superresolution Using Entangled Photons PRL 

112, 223602 (2014) 

 S. T Merkel,  F. Kwilhelm Generation and detection of NOON states in 

superconducting circuits NJP 12, 093036 (2010) 

Vital question: 
Is it possible to obtain N00N-like 
“robust”  state  for  mesoscopic  
𝑵𝟓𝟎  number  of   particles?   



Nonlinear metrology; Super-Heisenberg limit 
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𝟏

𝑵𝒎 ≤ 𝚫𝝋 ≤
𝟏

𝑵𝒎−𝟏/𝟐
 

𝑼 𝝋 = 𝒆𝒊𝝋𝑵
𝒎

 

𝚿 𝒊𝒏 

𝚿 𝒐𝒖𝒕 

Super-Heisenberg limit with 
maximally path-entangled states Quantum limit with with two-mode  

coherent input state  

𝝋 – nonlinear phase-shift 
per particle 

Some papers 
 Sergio Boixo et al Generalized Limits for Single-Parameter Quantum Estimation PRL 98, 090401 (2007)  
 M. Napolitano et al Interaction-based quantum metrology showing scaling beyond the Heisenberg limit  

Nature 471 , 486 (2011) 

For Kerr-like medium 𝒎 = 𝟐 Vital question:  
Can we beat this limit in 

practice? 

𝚿 𝒊𝒏 

𝚿 𝒐𝒖𝒕 𝝌(𝟑) 



Quantum metrology with atomic condensates    

In a Mach-Zehnder  interferometer two spatial 
modes       and          are combined on beam 
splitter,     followed by a relative phase shift      
                         between the two arms, and finally  
recombined on a second  beam splitter. 

𝒂  𝒃  

𝝋 = 𝜽𝒂 − 𝜽𝒃 

Equivalent  representation of MZ interferometer 
operations as rotations of the collective spin on 
the Bloch sphere. The initial state here            is 
pointing toward the north pole. The full sequence 
is equivalent to the rotation of an   angle                
around the y axis. 

𝝋 𝝋 𝝋 

L. Pezze, et al, Rev. Mod. Phys. (2018) 

𝝋 

𝝋 

Condensates  possess high nonlinearity  in 
Tonks-Girardeau   (1D) regime at mesoscopic 
number of particles  



Quantum Metrology with solitons 

Linear metrology approach,       is linear phase 

Non-linear metrology approach 

𝝋 

Ultimate Propagating error is 

𝚫𝝋 =
𝟏

𝑵
 

Ultimate Propagating error is 

𝚫𝝋 =
𝟏

𝑵𝟑 

𝝋𝒔𝒐𝒍 Is nonlinear phase between solitons 

Coupled solitons  allow  to create entangled 
Fock states  approaching   N00N -states 

We can do a particle counting  measurement and assign parity to be +1  if the 
number is even or-1 if the number is odd. 

𝑷 𝟐 = 𝒆𝒊𝝅𝒂 𝟐
+𝒂 𝟐  

G. S. Thekkadath , B. A. Bell, I. A. Walmsley,  and A. I. Lvovsky,  Quantum 4, 239 (2020) 



Quantum approach to solitons 

C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, (Cambridge University, 2008)  
S. Raghavan and G.P. Agrawal  Switching an d self-trapping  dynamics of Bose – Einstein Solitons    J. Mod. Opt. 47 1155–
69 (2000) 

Quantum field theories  for solitons 

Elliott H. Lieb and Werner Liniger, Exact Analysis of an Interacting Bose Gas. I, II  Physical Review 130: 1605–1624 (1963) 
Faddeev, L. D., & Korepin, V. E.. Quantum theory of solitons. Physics Reports, 42(1), 1–87 (1978) 

Solitons in Quantum  optics 

P. D. Drummond and S. J. Carter, “Quantum-field theory of squeezing in solitons," J. Opt. Soc. Am. B 4, 1565 (1987). 
Y. Lai and H. A. Haus, Quantum theory of solitons in optical fibers. Phys. Rev. A 40, 844 (1989) 
A. V. Belinskii and A. S. Chirkin, Quantum theory of nonlinear propagation of Schrodinger solitons: squeezed states and 
sub-Poisson statistics Zh. Eksp. Teor. Fiz. 98,407418 (1990)  
S. R. Friberg,  et al, Observation of Optical Soliton Photon-Number Squeezing," Phys. Rev. Lett. 77, 3775 (1996). 
 

Solitons under matter light interaction  
Ray-Kuang Lee and Yinchieh Lai, Quantum squeezing and correlation of self-induced transparency solitons, Phys. Rev. 
A 80, 033839 (2009)  
T. Y. Golubeva,  Yu. M. Golubev,  et al. Quantum Fluctuations in a Laser Soliton. Opt. Spectrosc. 128, 505 (2020) 
 

BEC solitons 



Atomic  bright solitons  

Classical non-moving bright soliton  Schrodinger Equation   

condensate ‘wave-function characterizes  atomic nonlinearity 

is an s-wave scattering length 

is a characteristic trap size Normalization condition  

Feshbach resonance  for  

Critical number of  Li atoms 
when collapse occurs  

 Strecker K E, et al,  Nature 417 150–3 (2002) 
 Khaykovich L, et al ,   Science 296 1290 (2002) 

The number of particles is mesoscopic ! 



Soliton quantization in single mode approximation 

For BEC Gaussian state Hamiltonian is 

 A.S. Parkins, D.F. Walls, Physics Reports (1998) 
 J. R. Anglin and A. Vardi, Phys. Rev. A (2001) 

𝒂 ≫ |𝒂𝒔𝒄| 𝑵 

Solution ansatz 

Spatial condensate wave function  
   

For BEC soliton state   
Solution ansatz Classical Hamiltonian is 

This approach is valid for characteristic trap size  



For 

Soliton Josephson Junctions (SJJ) 

Semi-classical model 

e−𝒚
𝟐/𝒅𝟐 

𝑵𝟏 
𝑵𝟐 

𝜿 

𝜿 is coupling rate 

is population imbalance 
Is vital parameter  

Self-tuning effect  

For 

is effective tunneling parameter  

we have  𝜿𝒆𝒇𝒇 → 𝟎 and  𝚲  𝒆𝒇𝒇 → 

For we have  𝜿𝒆𝒇𝒇 ≈ 𝜿 and  𝚲 𝒆𝒇𝒇 ≈ 𝚲 - similar to Gaussian BECs  

- the tunneling is effectively  
blocking! 



Quantum SJJ model; Energy spectrum    

D V Tsarev, A P Alodjants, T.V.  Ngo and Ray-Kuang Lee,   

New J.  of Physics. V. 22. P. 113016 (2020) 

Dependencies of the quantum 
Hamiltonian  eigen-energies, E/κN, 

vs Λ-parameter for N = 300 particles 

𝑬𝟎 = −𝟏 

1.58 

N00N-state 

2.42 

Schrodinger  
Cat-state 

|Cat-state > ≃ 

|N00N-state > ≃ 

N    0 0    N 

    𝑵𝟏  𝑵𝟐         𝑵𝟐  𝑵𝟏     



Ground state in the Fock basis: 

Ψ =  𝐴𝑛

𝑁

𝑛=0

n 1 N − n 2 
Superfluid phase of atom BEC 

Quantum phase transition 

Quantum «Mott insulator» state  

19/23 
For 

a) Λ, 𝜆 ≈ 0; 

b) Λ = 2, 𝜆 = 1; 

c) Λ ≈ 2.009925, 𝜆 = 2.1; 

d) Λ, 𝜆 = 4 

Quantum SJJ model  

Where   𝐴𝑛
2 = 1𝑁

𝑛=0   

Coefficients 𝐴𝑛 may be find from 
solution of Schrodinger equation  

Haigh T J, Ferris A J and Olsen M K  Opt. Commun. 
283 3540–7 (2010) 



Measure of the state entanglement 

𝐸𝐻𝑍
1
< 1 characterizes  

quantum entanglement 
 (planar spin-squeezing), 
m=1  
 

𝐸𝐻𝑍
𝑁

= 0.5 characterizes  
𝑁00𝑁-state formation, 
m=N   

Hillery-Zubairy m-th order entanglement criteria : 𝟎 ≤ 𝑬𝑯𝒁
𝒎

< 𝟏, where 
 

𝑬𝑯𝒁
𝒎

= 𝟏 +
𝒂 𝟏
+ 𝒎 𝒂 𝟏

𝒎 𝒂 𝟐
+ 𝒎 𝒂 𝟐

𝒎 − 𝒂 𝟏
+ 𝒎 𝒂 𝟐

𝒎 𝟐

𝒂 𝟏
+ 𝒎 𝒂 𝟏

𝒎 𝒂 𝟐
𝒎 𝒂 𝟐

+ 𝒎 − 𝒂 𝟐
+ 𝒎 𝒂 𝟐

𝒎
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Multi-particle entanglement 

For 
 He Q Y, Drummond P D, Olsen M K and Reid M D 2012 Phys. Rev. A 86 023626 
 H. M. Wiseman, S. J. Jones, and A. C. Doherty Phys. Rev. Lett. 98, 140402 – Published 6 April 2007 
 



Nonlinear Metrology with solitons; Results 

𝝋𝒔𝒐𝒍 = 𝐚𝐫𝐜𝐜𝐨𝐬 −𝟎. 𝟔𝟐𝟓𝚲  Relative phase  

Superposition N00N-state: 

|𝑵𝟎𝟎𝑵 =
𝟏

𝟐
|𝑵𝟎 + 𝒆−𝒊𝝋𝒔𝒐𝒍|𝟎𝑵 , 

+ 

𝑷 – relative momentum of solitons; 

𝜹 – relative coordinate of solitons. 

Scheme for counterpropagating  solitons 

D V Tsarev , T.V.  Ngo, Ray-Kuang Lee,  and AP Alodjants, Nonlinear quantum metrology with 

moving matter-wave solitons ,  New J. Phys. 21,  083041, (2019) 



Phase-difference estimation 

where 

𝝋𝒔𝒐𝒍 ≈
𝝅

𝟐
𝑵 + 𝟎. 𝟔𝟑𝑵𝟑𝚯 

𝚯 = 𝐮𝟐/𝟏𝟔𝜿 𝚫𝚯 ∝
𝟏

𝑵𝟑 

16/23 

Phase difference  of two interfering matter waves 

Standard Quantum Limit for displacement  

measurement with    𝚫𝝋 𝑺𝑸𝑳 = 𝟏/ 𝑵   

Propagation error for solitons 
displacement  

 𝝋 = 𝑷𝜹/ℏ 

𝚫𝜹𝑺𝑸𝑳 =
ℏ

𝑵𝑷
  

𝚫𝜹 ∝
𝚯

𝑵𝟑𝑷
  

Propagation error for soliton parameters  

Soliton phase  

is parameter that we can estimate 



Lossy Quantum Metrology 

Fictitious  Beam Splitters   method 

is transmissivity of fictitious BS in the channel 

 Gardiner C and Zoller P 2000 Quantunm Noise (Berlin: Springer) 
  U. Dorner, et al, PRL 102, 040403 (2009) 
 A A Semenov et al  J. Phys. B: At. Mol. Opt. Phys. 39 905 (2006) 

Is in vacuum state and characterizes coupling with environment  



Soliton Quantum State verification  

Scheme of conditional state preparation  Conditional  state   

1 0 

Before measurement After  measurement 

Population        times lower!  
Fock State superposition  

- normalization constant 



Quantum State verification  

Scheme of solitons with losses  
The State   

Without losses 

With losses 



Quantum Fisher information approach  

Quantum Cramer-Rao (QCR) bound;     Fisher information    

𝚫𝝋 
𝟏

𝝂 𝑭𝑸
 

𝑭𝑸 

𝑭𝑸 = 𝟒 𝝍′|𝝍′ − 𝝍′|𝝍 𝟐 =< 𝚫  𝒃 +𝒃  
𝒎 𝟐

> 

|𝝍′  = |𝝍 /𝝋 

𝑼 𝝋 = 𝒆𝒊𝝋( 𝒃
 +𝒃  )𝒎 

 𝝆 𝝋   𝝆𝒊𝒏 𝝋  

Scheme of  metrology with losses 

 𝒎 = 𝟏 

 𝝂 

Linear metrology approach  

Non-linear metrology approach  with solitons 

where 

 𝒎 = 𝟑 

Is  a number of experimental runs 



Fisher information  Zoo  in the presence of losses  

Results (upper bound for FI) 

𝜹𝝓𝒎𝒊𝒏 =
𝟏

𝑭𝑸
 

Standard interferometric  limit (SIL) -  

𝟏/𝑵 

Super-Heisenberg Limit (SHL) -  

Heisenberg Limit (HL) -  

Non-linear interferometric  limit (NIL) -  

= 𝟏/ 𝜼𝑵 

𝟏/𝐍𝟑 

U. Dorner, et al, PRL 102, 040403 (2009) 

𝟏/𝑵𝟓/𝟐 𝜼 

𝜼 𝒆−𝟐𝒎/𝑵,  for  m=1 ,  and m=3 

N00N state may be useful if   

𝑭𝒐𝒓 𝜼 = 𝟎. 𝟗  𝑵𝟏 = 𝟏𝟗  𝒂𝒏𝒅  𝑵𝟑 = 𝟓𝟕 

HL= 𝟏/N 

SHL= 𝟏/𝐍𝟑 

𝐒𝐈𝐋 = 𝟏/ 𝜼𝑵 

𝟏/𝑵𝟓/𝟐 𝜼 



Losses in condensate solitons in semi-classical limit 

 One-body losses (exponential decay) 

 Three-body losses (non-exponential decay) 

Absorption images at variable delays after switching 
off the vertical trapping beam. Propagation of an 
ideal BEC gas (A) and of a soliton (B) in the 
horizontal 1D waveguide in the presence of an 
expulsive potential. Propagation without dispersion 
over 1.1 mm is a clear signature of a soliton. 
Corresponding axial profiles are integrated over the 
vertical direction. 

Condition                         is fulfilled in current experiments ! 

Lev Khaykovich, et al ,   Science 296 1290 (2002) 

𝜸𝟏,𝟑 𝒕 ≪1 



Experiments with BEC solitons 

Nguyen J, Dyke P, Malomed B A, et al Collisions of matter-wave solitons Nature Phys. 10, 10918-922 (2014) 12/23 

Atomic solitons collision 

Schematic of the experiment and images of phase-dependent collisions 

a) Couple of solitons formation via potential barrier.  b-c) Time evolution of a soliton pair  after the barrier is turned off. 
Solitons are accelerated towards the centre of the trap and collide at a quarter-period (τ =2π/ωz =32ms). The density 
peak appearing at the centre-of-mass indicates that this is an in-phase (𝜃 = 0 ) collision. c, Similar to b, except the 
density node appearing at the centre-of-mass indicates an out-of-phase (𝜃 = 𝜋) collision.  
 

32ms 

16ms 

0 ms 



What is about other solitons? 

Exciton polariton solitons  in waveguides  (P.M. Walker,  et al, Nat.com.6, 2015) 

(a) Schematic diagram of waveguide (the same waveguide is shown with pulses under 
low-power and high-power excitation conditions). (b) Angle-resolved photoluminescence 
spectrum showing emission from the LB polariton branch in red.  

LB polariton branch 

Measured time of flight of different wavevector components of pulse at low power 
(black diamonds) and high power (coloured symbols), and time of flight extracted from 
curvature of polariton dispersion (solid curve). 

Refractive index is                                              . It is three orders of magnitude larger than  in 
planar AlGaAs waveguides in the weak coupling regime. 

 

Strong coupling condition! 

𝜸 ≪ 𝛀𝐑 

𝛾 = 44.3𝜇𝑒𝑉,  ΩR=4.5meV 



Conclusion 

 We propose to use  quantum bright solitons with mesoscopic number of particles for 
quantum metrological applications;  

 We have shown for the first time that solitons  allow SH phase estimation   up to              
level in the framework  of  a nonlinear metrology approach.  

 We propose  new soliton Josephson junction (SJJ) device    that allows to create  robust 
entangled  Fock  state  which can be modeled  by  the  N00N state for the losses  less 
than  

 We have shown  feasibility  of  quantum metrological applications  of  quantum solitons  
in current experiments  with atomic solitons  containing  moderate  (mesoscopic) 
number of particles.  

𝟏/𝑵𝟑 

𝟏 − 𝒆−𝟐𝒎/𝑵, m=1 ,  and m=3. 



Andrei Bazhenov Dmitrii Tsarev Vin  Ngo 

Recent publications  
 D V Tsarev, A P Alodjants, T.V.  Ngo and Ray-Kuang Lee, Mesoscopic quantum superposition states of weakly-coupled matter-

wave solitons,  New J.  of Physics. V. 22. P. 113016 (2020) 

 D V Tsarev , T.V.  Ngo, Ray-Kuang Lee,  and AP Alodjants, Nonlinear quantum metrology with moving matter-wave solitons ,  

New J. Phys. 21,  083041, (2019) 

 A. Bazhenov, D. Tsarev, A. Alodjants,  Temperature quantum sensor on superradiant phase transition, Physica  B,  579, 411879 
(2020)  

 D V Tsarev , S. M. Arakelian,  You-Lin  Chuang , Ray-Kuang Lee, and AP Alodjants , Quantum metrology beyond Heisenberg limit 
with entangled matter wave solitons, Optics Express,  26, 19583   (2018)  
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