

QUANTUM TOMOGRAPHY BENCHMARKING

Bantysh B. I., Chernyavskiy A. Yu., Bogdanov Yu. I.

Valiev Institute of Physics and technology, Russian Academy of Sciences

Quantum Tomography Benchmarking

ARE YOU CHOOSING A NEW CPU?

WHAT ABOUT GPU?

SUPERCOMPUTERS?

LINPACK benchmarks

Rank (previous) *	Rmax Rpeak + (PFLOPS)	Name 🕈	Model +	CPU cores +	Accelerator (e.g. GPU) cores	Interconnect +	Manufacturer ¢	Site country	Year ¢	Operating system
1	442.010 537.212	Fugaku	Supercomputer Fugaku	158,976 × 48 A64FX @2.2 GHz	0	Tofu interconnect D	Fujitsu	RIKEN Center for Computational Science Japan	2020	Linux (RHEL)
2 🔻 (1)	148.600 200.795	Summit	IBM Power System AC922	9,216 × 22 POWER9 @3.07 GHz	27,648 × 80 Tesla V100	InfiniBand EDR	IBM	Oak Ridge National Laboratory United States	2018	Linux (RHEL)
3 v (2)	94.640 125.712	Sierra	IBM Power System S922LC	8,640 × 22 POWER9 @3.1 GHz	17,280 × 80 Tesla V100	InfiniBand EDR	IBM	Lawrence Livermore National Laboratory United States	2018	Linux (RHEL)
4 v (3)	93.015 125.436	Sunway TaihuLight	Sunway MPP	40,960 × 260 SW26010 @1.45 GHz	0	Sunway ^[26]	NRCPC	National Supercomputing Center in Wuxi China ^[26]	2016	Linux (Raise)
5 (7)	63.460 79.215	Selene	Nvidia	1,120 × 64 Epyc 7742 @2.25 GHz	4,480 × 108 Ampere A100	Mellanox HDR Infiniband	Nvidia	Nvidia United States	2020	Linux (Ubuntu)
6▼ (5)	61.445 100.679	Tianhe-2A	TH-IVB-FEP	35,584 × 12 Xeon E5-2692 v2 @2.2 GHz	35,584 × 128 Matrix- 2000 ^[27]	TH Express-2	NUDT	National Supercomputer Center in Guangzhou China	2013	Linux (Kylin)
7 ▲ (new)	44.120 70.980	JUWELS (booster module) ^[28]	BullSequana XH2000	1,872 × 24 AMD EPYC 7402 @2.8 GHz	3,744 × 108 Ampere A100	Mellanox HDR Infiniband	ATOS	Forschungszentrum Jülich	2020	Linux (CentOS)
8 🔻 (6)	35.450 51.721	HPC5	Dell	3,640 × 24 Xeon Gold 6252 @2.1 GHz	7,280 × 80 Tesla V100	Mellanox HDR Infiniband	Dell EMC	Eni Italy	2020	Linux (CentOS)
9 🔻 (8)	23.516 38.746	Frontera	Dell C6420	16,016 × 28 Xeon Platinum 8280 @2.7 GHz (subsystems with e.g. POWER9 CPUs and Nvidia GPUs were added after official benchmarking ^[10])	0	InfiniBand HDR	Dell EMC	Texas Advanced Computing Center United States	2019	Linux (CentOS)
10 <u>.</u> (new)	22.400 55.424	DAMMAM-7	CRAY CS-Storm	1,978 × Xeon Gold 6248 @2.5 GHz	7,912 × 80 Tesla V100	InfiniBand HDR 100	Cray	Saudi Aramco	2020	Linux (RHEL)

QUANTUM PROCESSORS?

Not really

GOALS OF BENCHMARKING

Help user to choose

Address practical problems

Help developers

Software benchmarking

MNIST: DATABASE OF HANDWRITTEN DIGITS

/ | | | | / / / / / | | | | / / / 3 3 ч

https://en.wikipedia.org/wiki/MNIST_database

Туре 🗢	Classifier +	Distortion +	Preprocessing +	Error rate (%)
Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation Networks ^[32]	None	Data augmentation	0.17 ^[33]
Random Multimodel Deep Learning (RMDL)	10 NN-10 RNN - 10 CNN	None	None	0.18 ^[22]
Convolutional neural network	Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.21 ^{[19][20]}
Convolutional neural network	Committee of 35 CNNs, 1-20-P-40-P-150-10	Elastic distortions	Width normalizations	0.23 ^[12]
Convolutional neural network (CNN)	13-layer 64-128(5x)-256(3x)-512-2048-256-256-10	None	None	0.25 ^[17]
Convolutional neural network	6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.27 ^[31]
Convolutional neural network (CNN)	6-layer 784-40-80-500-1000-2000-10	None	Expansion of the training data	0.31 ^[30]

IMAGENET: DATABASE OF ANNOTATED IMAGES

> 14,000,000 images
> 20,000 categories

MORE MACHINE-LEARNING DATABASES

https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

Contents [hide]

1 Image data

- 1.1 Facial recognition
- 1.2 Action recognition
- 1.3 Object detection and recognition
- 1.4 Handwriting and character recognition
- 1.5 Aerial images
- 1.6 Other images

2 Text data

- 2.1 Reviews
- 2.2 News articles
- 2.3 Messages
- 2.4 Twitter and tweets
- 2.5 Dialogues
- 2.6 Other text
- 3 Sound data
 - 3.1 Speech
 - 3.2 Music
 - 3.3 Other sounds
- 4 Signal data
 - 4.1 Electrica

> 300 date-sets from 10 categories

BENCHMARKING PSEUDO-RANDOM NUMBER GENERATORS

BENCHMARKING NUMERICAL OPTIMIZATION

https://en.wikipedia.org/wiki/Test_functions_for_optimization

Name	Plot	Formula	Global minimum	Search domain
Rastrigin function		$f(\mathbf{x}) = An + \sum_{i=1}^n \left[x_i^2 - A\cos(2\pi x_i) ight]$ where: $A = 10$	$f(0,\ldots,0)=0$	$-5.12 \leq x_i \leq 5.12$
Ackley function		$egin{aligned} f(x,y) &= -20 \expigg[-0.2 \sqrt{0.5 \left(x^2+y^2 ight)}igg] \ &- \exp[0.5 \left(\cos 2\pi x + \cos 2\pi y ight)] + e + 20 \end{aligned}$	f(0,0)=0	$-5 \leq x,y \leq 5$
Sphere function		$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$	$f(x_1,\ldots,x_n)=f(0,\ldots,0)=0$	$-\infty \leq x_i \leq \infty, \ 1 \leq i \leq n$
Rosenbrock function		$f(m{x}) = \sum_{i=1}^{n-1} \left[100 ig(x_{i+1} - x_i^2 ig)^2 + (1-x_i)^2 ight]$	$\mathrm{Min} = egin{cases} n=2 & o & f(1,1)=0, \ n=3 & o & f(1,1,1)=0, \ n>3 & o & f(\underbrace{1,\ldots,1}_{n ext{ times}})=0 \end{cases}$	$-\infty \le x_i \le \infty,$ $1 \le i \le n$

Quantum Tomography Benchmarking

COMPUTER TOMOGRAPHY

QUANTUM TOMOGRAPHY

QUANTUM TOMOGRAPHY AS A DEBUG TOOL

HOW TO IMPLEMENT QT?

Difficulties in comparison and choice

- Lack of important details
- Incredibly difficult to implement unknown methods
 - Difficult to verify implementations
- $\hfill\square$ Strongly limited number of examples
- Different accuracy measures
- Different tests
- Publication bias

A LIFE STORY

New Journal of Physics

The open access journal at the forefront of physics

PAPER • OPEN ACCESS

Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators

Steven T Flammia^{5,1}, David Gross², Yi-Kai Liu³ and Jens Eisert⁴ Published 27 September 2012 • © IOP Publishing and Deutsche Physikalische Gesellschaft <u>New Journal of Physics</u>, <u>Volume 14</u>, <u>September 2012</u>

Citation Steven T Flammia et al 2012 New J. Phys. 14 095022

OTHER EXAMPLES

Superfast maximum-likelihood reconstruction for quantum tomography

Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng Phys. Rev. A **95**, 062336 – Published 27 June 2017 No details on protocol and reconstruction accuracy

A single example of a mixed state

Atoms, Molecules, Optics | Published: 22 July 2009

Unified statistical method for reconstructing quantum states by purification

Yu. I. Bogdanov 🖂

Iournal of Experimental and Theoretical Physics **108**, 928–935(2009) Cite this article **66** Accesses **23** Citations Metrics

Adaptive quantum tomography of high-dimensional bipartite systems

G. I. Struchalin, E. V. Kovlakov, S. S. Straupe, and S. P. Kulik Phys. Rev. A **98**, 032330 – Published 26 September 2018 Only random highdimensional bipartite states

RECALL THE PRACTICE FROM OTHER FIELDS

Quantum Tomography Benchmarking

QTB

Goal

Create a convenient universal platform for analyzing and comparing quantum tomography methods

Objectives

Develop <u>useful</u> comparison **metrics** Design a **test suite** close to experimental problems Develop easy-to-use **software**

Basic principles

Simulation based analysis Tests and methods are completely independent

What	Why
Fidelity	Main metric defining the tomographic accuracy
Total sample size	Large sample size require longer experiment
Number of bases	Each basis change require experimental setup re-configuration
Protocol computation time	Adaptive methods take time to calculate next measurement
State computation time	Non-effective method may take too much time
Efficiency	Defines the closeness to an perfect method
Outliers ratio	Outliers may spoil some experiments
Factorized measurements	Non-factorized are more noisy and hard to implement

METRICS DERIVATION

Common approach

Our approach

What resources do I need to get the required fidelity?

99,9% fidelity with 95% probability

BENCHMARK TESTS

\checkmark Random pure states

Common QT problem

 $\rho = |\psi\rangle\langle\psi|, |\psi\rangle = U|0\rangle, U \sim \text{Haar}(d)$

Random mixed states by partial tracing

When analyzing a subsystem

$$\rho = \mathrm{Tr}_{A}(|\psi\rangle\langle\psi|), |\psi\rangle = U|0\rangle, U \sim \mathrm{Haar}(d_{S} \cdot d_{A})$$

 $d_A = 2$ $d_A = d_S$

\checkmark Random noisy preparation

Induced by preparation procedure

$$|0\rangle^{\otimes n} \xrightarrow{n} \mathcal{U} |\Psi\rangle \quad U \sim \text{Haar}(d)$$

$$\rho_{0}^{\otimes n} \xrightarrow{n} \mathcal{U} - \mathcal{E} - \rho$$

$$\rho_{0} = (1 - e_{0})|0\rangle\langle 0| + e_{0}|1\rangle\langle 1| \qquad e_{0} \sim \text{unif}(0, 0.05)$$

$$\mathcal{E}(\rho) = (1 - p)\rho + pI/d \qquad p \sim \text{unif}(0, 0.01)$$

SOFTWARE

https://github.com/PQCLab

Search or jump to	Pull requests Issues Marketplace Explore	₽ + • ₽ •	
	🛱 Overview 📮 Repositories 💈 🔟 Projects 🔗 Packa	ages	
PQC	Popular repositories mQTB Quantum Tomography Benchmarking	DiscreteMath The fundamental interaction of quantum information science and discrete	
	● MATLAB ☆ 2 😵 3	Mattal Mattal Metaction of quantum mormation science and discrete mathematic Mattal ☆ 1 😵 1	
PQCLab	mRootTomography MATLAB library for the root approach quantum tomography ● MATLAB ☆ 1 ♀ 1	pyQTB Python library for benchmarking quantum tomography methods ● Python ☆ 1	
P_{λ} 3 followers \cdot 0 following $\cdot \stackrel{\bullet}{\hookrightarrow} 1$	SolovayKitaev Python implementation of Solovay-Kitaev algorithm	RandomMutations Global optimization solver for MATLAB	
Highlights	Python	MATLAB 😵 1	

BASIC FEATURES

Easy-to-use

Random numbers synchronization

Parallelization (Python only)

Report generation (MATLAB only)

Custom tests (not released yet)

MATLAB \leftrightarrow Python results migration

Same interface for MATLAB and Python

APPROBATION

Supplementary material I. Methods analysis results

Quantum tomography benchmarking Bantysh B. I., Chernyavskiy A. Yu., Bogdanov Yu. I.

The current document summarizes the results of using the quantum tomography (QT) benchmarking software for analyzing different QT methods. For each method we also provide a basic information: measurement protocol, quantum state estimator, data processing algorithm and computing machine. The sign "*" in tables means that the value was obtained by linear extrapolation of the dependence of $\log[1 - F]_{95}$ on $\log N$.

Bantysh B. I., Chernyavskiy A. Y., Bogdanov Y. I. Quantum tomography benchmarking //arXiv preprint arXiv:2012.15656. – 2020 (under review in Quantum Information Processing)

Contents

1	MUB-FRML	2
	1.1 1 qubit	2
	1.2 2 qubits	3
	1.3 3 qubits	4
2	FMUB-PPI	5
	2.1 1 qubit	5
	2.2 2 qubits	6
	2.3 3 qubits	7
3	FMUB-FRLS	7
	3.1 1 qubit	8
	3.2 2 qubits	8
	3.3 3 qubits	9
4	FMUB-FRML	10
	4.1 1 qubit	10
	4.2 2 qubits	11
	4.3 3 qubits	12
5	FMUB-TRML	12
	5.1 1 qubit	13
	5.2 2 qubits	14
		14

Special thanks to Dr. G.I. Struchalin for help in carrying out the computations

12 methods 1, 2, 3 qubits 127 tables

VISUAL REPRESENTATION: TWO QUBITS CASE

Random noisy preparation test

QUANTITATIVE REPRESENTATION: TWO QUBITS CASE

Table 1 Comparison of benchmarks of tomography methods for two-qubit pure states (reaching benchmark fidelity $F_B = 99.9\%$ with 95% probability)

	N_B	M^B_{95}	$T^B_{P,95},\mathrm{sec}$	$T^B_{E,95},\mathrm{sec}$	η_B	O_B	FM
Lower bound	6 296	_	_	_	1	_	_
FMUB-TRML	7 205	9	0.0014	0.0081	0.9	0.0098	Υ
FMUB-ARML	7 798	9	0.0014	0.013	0.57	0.022	Y
PAULI-CS	20 239	15	0.0015	0.61	0.31	0.0071	Y
AMUB-FRML*	$23 \ 472$	98	2.9	0.31	0.35	0.0026	Ν
FO-FRML*	164 734	153	170	0.14	0.062	0.048	Y
FOMUB-FRML*	$172\ 765$	172	15	1.1	0.073	0.0078	Y
$SGQT^*$	**1 048 989	_	_	_	_	_	Ν
FMUB-CS	**1 123 593	_	_	_	_	_	Y
FMUB-FRML	**1 424 621	_	_	_	_	_	Y
MUB-FRML	**1 638 550	_	_	_	_	_	Ν
FMUB-FRLS	**1 763 979	_	_	_	_	_	Y
FMUB-PPI	**1 811 355	_	_	_	_	_	Υ

* Adaptive method

** The value is obtained by linear extrapolation of the dependence of $\log[1 - F]_{95}$ on $\log N$

QUANTITATIVE REPRESENTATION: TWO QUBITS CASE

Table 2 Comparison of benchmark parameters of tomography methods for two-qubit states with noisy preparation (reaching benchmark fidelity $F_B = 99.9\%$ with 95% probability)

	N_B	M^B_{95}	$T^B_{P,95},\mathrm{sec}$	$T^B_{E,95}$, sec	η_B	O_B	FM
Lower bound	31 245	_	_	_	1	_	_
AMUB-FRML*	$165 \ 667$	161	5.2	0.2	0.28	0.0083	Ν
FOMUB-FRML*	629 755	218	36	2.1	0.095	0.036	Υ
MUB-FRML	$1\ 016\ 042$	5	0.00067	0.022	0.072	0.056	Ν
FMUB-FRML	$1\ 251\ 861$	9	0.00051	0.18	0.06	0.039	Υ
FMUB-TRML	$1\ 251\ 861$	9	0.00051	0.18	0.06	0.039	Υ
FMUB-FRLS	1 382 130	9	0.0011	0.66	0.05	0.038	Υ
FMUB-PPI	$1 \ 400 \ 187$	9	0.00061	0.00057	0.049	0.038	Υ
FMUB-CS	$2 \ 234 \ 214$	9	0.00091	0.49	0.027	0.014	Υ
FO-FRML*	2 851 554	240	301	3.5	0.026	0.014	Υ
FMUB-ARML	$6\ 238\ 296$	9	0.0012	0.47	0.017	0.13	Υ
PAULI-CS	**39 664 389	_	_	_	_	_	Υ

* Adaptive method

** The value is obtained by linear extrapolation of the dependence of $\log[1 - F]_{95}$ on $\log N$

CONCLUSIONS

- A methodology for benchmarking quantum tomography methods was implemented
 - A set of reference (benchmarking) parameters has been developed
 - Tests that are close to experiments have been developed
 - The corresponding universal software has been developed
- Approbation was carried out on 12 methods of quantum tomography
- A taxonomy of quantum tomography methods has been developed

We encourage all scientists who develop and use quantum tomography methods to participate in the development!

FUTURE WORK

- Support methods with training
- Support prior information use
- Tests with systematic measurement errors
- Quantum process tomography

SIDE RESULT: TEST BENCH FOR QT METHODS

Task: compare different measurement strategies in the presence of instrumental noise

```
6 - qudit_test = qtb_tests.create_test(d, ...
7 @() statefun(d, depol), ...
8 @(dm, meas) measfun(dm, meas, d, pm, depol), ...
9 'code', 'qudit', ...
10 'nsample', round(10.^[5,6,7,8]), ...
11 'nexp', 200, ...
12 'rank', d);
```


NSamples

Strategy	3	'*164 259 424'
Strategy	2	'*226 686 292'
Strategy	1	'*1.052 531 715 800 418e+17'

Thank you for your attention!

https://en.wikipedia.org/wiki/List_of_quantum_tomography_methods

Protocol +	Estimator +	Sample size 🗢	Measurement number 🗧 🗢	Efficiency (%) +
Factorized MUB	True rank maximum likelihood	7 205	9	90
Factorized MUB	Adaprive rank maximum likelihood	7 798	9	57
Pauli observables	Compressed sensing	20 239	15	31
Adaptive MUB	Full rank maximum likelihood	23 472	98	35
	Full rank maximum likelihood	164 734	153	

Bantysh Boris bbantysh60000@gmail.com

METRICS DETAILS

$$F = \left(\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} \right)^2 - \text{fidelity}$$

$$\eta = \frac{\langle 1 - F \rangle_{\min}}{\langle 1 - F \rangle} = \frac{\left[\left(2d - r \right) r - 1 \right]^2}{4N(d - 1)\langle 1 - F \rangle} - \text{efficiency}$$

$$MC = - \underset{F_{-} < Q_{2} < F_{+}}{\text{med}} \left[\frac{(F_{+} - Q_{2}) - (Q_{2} - F_{-})}{F_{+} - F_{-}} \right] \qquad 1 - F \in \left[Q_{1} - 1.5e^{-4MC}IQR; \quad Q_{3} + 1.5e^{3MC}IQR \right] - \text{outliers}$$