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Far-field optical imaging

State-of-the-art 
‘fundamental’ limits 

Imaging speed: 
Nyquist limit

Spatial resolution: 
Abbe diffraction limit

Penetration depth

3[1] Amitonova, L. V. et al. Optics Letters 41, 497 (2016)
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van Leeuwenhoek Zeiss

centuries

The main principle 
is not changing!

Far-field optical microscopy

Far-field optical microscopy is based 
on a lens: 
a transmissive optical element that 
focuses a light beam by means of 
refraction

19th

Abbe
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New paradigm
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We used to the fact that disorder deteriorates imaging



Exploiting disorder!
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I aimed to change the concept: disorder helps to see better!
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Exploiting disorder!

I aimed to change the concept: disorder helps to see better!



Outline
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•New concept of far-field computational 
imaging beyond the limits

•Fluorescent super-resolution imaging: 
simulations
experimental results
theoretical analysis

•Label-free super-resolution imaging:
experimental results

•Summary



Components: 
Light scrambling         
Multimode fiber            
Compressive sensing           

New concept of imaging
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maximise information content 
ultra-compact probe 
optimal reconstruction

Standard microscope objective 
Complicated design and large price 
Large size 
Coupling between field of view and resolution: 
high resolution leads to low FOV



New concept of imaging
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100% of information 100% of information < 10% of information



Problem: 
To recover a vector  
from data y: 

y = Ax, 
where A is an m×n ‘sensing matrix’ 
n — number of pixels 
m — number of ‘measurements’ 
m << n

Among all objects consistent with the 
data, we pick that whose coefficient 
sequence has minimal l1 norm.

Solution: 
The following linear program gives an 
accurate reconstruction:

Ax̃ = y( = Ax)

x ∈ ℝn

subject tomin
x̃∈ℝn

∥x̃∥ℓ1

Sparsity constraint allows to reconstruct the data from incomplete measurement set 

Overcoming the Nyquist limit

Imaging beyond the Nyquist limit
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Overcoming the Abbe limit
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Sparsity constraint allows to reconstruct the data from incomplete measurement set 
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Sparsity constraint allows to reconstruct the data from incomplete measurement set 
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Simulations

3 μm

Parameters 
Experimentally measured set of speckle patterns 
NA = 0.22 (Spatial frequency profile of each speckle 
pattern was filtered to remove any accidental high 
frequency component) 
Poisson noise 
ℓ1-magic [from Stanford.edu] 



15

Sample Gauss illumination Speckle pattern

NA = 0.22

Simulations
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Sample Diffraction-limited Compressive imaging

256 ‘measurements’ to reconstruct 8100 pxls

> 30 times speed improvements

2.4 times resolution improvements 

NA = 0.22

3E6 photons per ‘measurement’ in average 

Simulations



Fiber core radius 

Numerical aperture 

V parameter (normalized frequency): 

Number of modes

Experimental setup
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V =
2π
λ

aNA

a
NA = n2

core − n2
clad

Nmodes =
V2

2

NA ~ 0.22 NA > 0.6



Sample

3 μm 3 μm
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3 μm

Diffraction-limited 
endo-microscopy

Super-resolution 
endo-microscopy

NA                           0.1 
Diffraction limit        2.66 μm 
Area                        30x30 μm2

Resolution         > 2.5 times below the Abbe limit 
Imaging speed  > 15 times better than Nyquist limit

Experimental results

L. V. Amitonova and J. F. de Boer, Light Sci Appl 9, 1–12 (2020)



Numerical simulations
Theoretical analysis

RIF ≤
2N2

K
ldl — diffraction limit
l — pixel size resolved

We investigated fundamental resolution limits of compressive 
imaging via sparsity constraint, speckle illumination and single-
pixel detection 

RIF = ldl /l

N2
K — number of nonzero pixels

— total number of pixels

Pixel size 200 nm 
NA = 0.25 
Diffraction limit 1060 nm

M = K*log(N2)

B. Lochocki, K. Abrashitova, J. F. de Boer, and L. V. Amitonova, 
Optics Express 29, 3943–3955 (2021)

Dr. Benjamin 
Lochocki
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Ultimate limits
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3 μm

Feature size 300 nm; 
Diffraction limit 1200 nm 
Sparsity is constant

BP

GPSR

Ultimate limits

B. Lochocki, K. Abrashitova, J. F. de Boer, and L. V. Amitonova, 
Optics Express 29, 3943–3955 (2021).



Super-resolution microscopy

21[1] L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, 
and G. P. C. Drummen, Nature Cell Biology 21, 72–84 (2019).

[1]

The Nobel Prize in Chemistry 2014 was awarded 
jointly to Eric Betzig, Stefan W. Hell and William 
E. Moerner "for the development of super-
resolved fluorescence microscopy." 

“…Helped by fluorescent molecules the Nobel 
Laureates in Chemistry 2014 ingeniously 
circumvented this limitation. Their ground-breaking 
work has brought optical microscopy into the 
nanodimension…”



Far-field label-free super-resolution
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Dr. Ksenia 
Abrashitova

K. Abrashitova, et al. in preparation
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Sample

Diffraction-limited

far field imaging

Computational

compressive


imaging

Resolution         
> 2.5 times below 
the Abbe limit 

Imaging speed 
> 15 times better 
than Nyquist limit

K. Abrashitova, et al. in preparation

Far-field label-free super-resolution



Summary
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A new concept that allows ‘imaging beyond the limits’ 
was proposed and experimentally demonstrated

• Ultra-compact imaging sensor. FOV and 
resolution are uncoupled

• Beyond the Nyquist limit: ultra-hight speed        
> 20 times faster than is required for a raster 
scanning approach

• Beyond the Abbe limit: resolution > 2 times 
better than the diffraction limit

• No special marks are needed
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