Схемотехника сверхпроводниковых кубитов Илья Беседин

Научный руководитель:

Алексей Устинов, проф., д. ф-м. н.

Введение

Актуальность и практическая значимость

Актуальность работы обусловлена, с одной стороны, потребностью в масштабировании сверхпроводниковых квантовых электрических цепей, используемых для квантовой симуляции, а с другой стороны — интересом к практической реализации универсального квантового компьютера и квантовых симуляторов среднего масштаба с десятками кубитов. Исследованные в диссертации структуры на основе трансмонов и методы реализации квантовых вентилей могут быть использованы при разработке таких устройств.

Практическая значимость связана, во-первых, с возможностью использования аналитической модели для быстрого проектирования систем частотно-мультиплексированного считывания в микроволновых интегральных микросхемах, и во-вторых, с демонстрацией возможности использования сверхпроводниковых электрических цепей для симуляции квантовой динамики больших систем мета-атомов. Кроме того, развитые методы проектирования сверхпроводниковых схем с и импульсные методы реализации вентилей являются фундаментом для построения более масштабных квантовых процессоров и симуляторов на основе сверхпроводниковых кубитов.

Цель: проектирование, теоретическое и экспериментальное исследование сверхпроводниковых квантовых электрических схем и метаматериалов на их основе

Задачи:

- Разработать аналитический метод расчёта внешней добротности сверхпроводниковых копланарных резонаторов, связанных посредством распределённых взаимных индуктивностей и ёмкостей с передающей линией;
- Развить методы проектирования и измерения характеристик систем сверхпроводниковых кубитов, связанных как с объёмными, так и с копланарным резонаторами;
- Разработать экспериментальную установку для измерения микроволнового отклика сверхпроводниковых квантовых электрических схем;
- Продемонстрировать работу простейшего квантового алгоритма алгоритма Гровера на квантовом процессоре из двух кубитов;
- Разработать и исследовать симулятор интересной квантовой системы гамильтониана Бозе-Хаббарда для модели Су-Шриффера-Хигера.

Положения и научная новизна

Положения, выносимые на защиту:

- 1. Получены аналитические формулы для зависимости частоты и добротности резонатора, связанного с передающей линией, от его геометрических размеров и входных импедансов линии.
- 2. Разработан метод проектирования сверхпроводниковых кубитов-трансмонов, связанных с объёмным резонатором, и алгоритм калибровки квантовых вентилей и считывания.
- Исследован микроволновый отклик метаматериала на основе цепочки ёмкостно связанных сверхпроводниковых кубитов-трансмонов, реализующий гамильтониан Бозе-Хаббарда с константами связи, отвечающими модели Су-Шриффера-Хигера.

Научная новизна:

- 1. Впервые получена аналитическая модель для частоты и внешней добротности копланарного резонатора со слабой распределённой связью с передающей линией в геометрии, используемой для частотно-мультиплексированного считывания кубитов;
- В квантовом метаматериале на основе цепочки ёмкостно связанных сверхпроводниковых кубитов-трансмонов, реализующий гамильтониан Бозе-Хаббарда с константами связи, отвечающими модели Су-Шриффера-Хигера, впервые исследованы топологические свойства двухфотонных возбуждений – дублонов.

Список публикаций по теме диссертации

- **Besedin, I.**, Menushenkov, A.P. Quality factor of a transmission line coupled coplanar waveguide resonator. *EPJ Quantum Technol.* **5**, 2 (2018).
- И.С. Беседин, Г.П. Федоров, В. В. Рязанов. Сверхпроводящие кубиты в России. Квантовая электроника **48** (10): 880 (2018)
- Ilya S. Besedin, Maxim A. Gorlach, Nikolay N. Abramov, *et al*. Topological excitations and bound photon pairs in a superconducting quantum metamaterial. Phys. Rev. B 103, 224520 (2021)

- Aleksey N. Bolgar, Julia I. Zotova, Daniil D. Kirichenko, Ilia S. Besedin, Aleksander V. Semenov, Rais S. Shaikhaidarov, and Oleg V. Astafiev. Quantum Regime of a Two-Dimensional Phonon Cavity. Phys. Rev. Lett. 120, 223603 (2018)
- K.V. Shulga, E. Il'ichev, M.V. Fistul, I. S. Besedin, S. Butz, O. V. Astafiev, U. Hübner & A. V. Ustinov et al. Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits. Nat Commun 9, 150 (2018)
- Moskalenko, I.N., Besedin, I.S., Tsitsilin, I.A. et al. Planar Architecture for Studying a Fluxonium Qubit. Jetp Lett. 110, 574– 579 (2019)
- I. N. Moskalenko, I. S. Besedin, S. S. Seidov, M. V. Fistul, and A. V. Ustinov. Quantum beats of a magnetic fluxon in a two-cell SQUID. Phys. Rev. B 103, 224528 (2021)

Содержание работы

- Введение:
- Глава 1: Теоретические сведения и обзор литературы
- Глава 2: Резонаторы
- Глава 3: Трансмоны
- Глава 4: Двухкубитный процессор (результаты не опубликованы и не выносятся на защиту)
- Глава 5: Цепочка трансмонов
- Заключение
- Приложения

Глава 1 Введение

Квантование электрических цепей на примере двух LC-контуров

$$\begin{split} & \begin{array}{c} & & \begin{array}{c} & & & I_{CC} & & 2 \\ & & & & \\ I_{C1} & & & \\ \hline & & & \\ I_{C1} & & & \\ \hline & & \\ I_{C1} & & & \\ I_{L1} & & & \\ I_{L1} & & & \\ I_{C2} & & \\ \hline & & \\ I_{C2} & & \\ \hline & & \\ I_{C2} & & \\ \hline & & \\ I_{C1} & & \\ I_{C1$$

Квантовые электрические цепи

Линейные системы не имеют памяти:

$$V_i^{\text{out}}(\omega) = S_{ij}(\omega)V_j^{\text{in}}(\omega)$$

Линейное устройство

Бездиссипативный нелинейный элемент сверхпроводниковой электроники: Джозефсоновский SIS контакт

Туннельный контакт $\begin{cases}
I = I_c \sin \varphi \\
V = \frac{\hbar}{2e} \dot{\phi} \qquad \varphi = \frac{2e\Phi}{\hbar} \\
V = \frac{\hbar}{2e} \dot{\phi} \qquad \varphi = \frac{2e\Phi}{\hbar} \\
V = \frac{\hbar}{2e} \dot{\phi} \qquad \varphi = \frac{2e\Phi}{\hbar} \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(1 - \cos\varphi) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt = \frac{\hbar}{2e}I_c(t) \\
E = \int_{0}^{\varphi(t)} V(t)I(t)dt \\
E = \int_{0}^{\varphi(t)$

Глава 2 Копланарный резонатор

Копланарный волновод

IATURE PHYSICS | VOL 16 | AUGUST 2020 | 875-880 | www.nature.com/naturephysics

MKID Nature 425, 817 (2003)

IBM 7-qubit processor

Копланарные резонаторы широко используются в сверхпроводниковых кубитных схемах

Добротность копланарного резонатора

$$S_{kl}\left(f\right) = A_{kl}\left(1 + \frac{B_{kl}}{f - f_{\rm p}}\right)$$

Комплексный параметр рассеяния

$$f_p = f_p' + i f_p''$$

Полюс амплитуды рассеяния

Постановка задачи:

 $Q_i(l_c,$ геометрия сечения) = ?

Ёмкостная связь: [22] M. Göppl et al. Coplanar waveguide resonators for circuit quantum electrodynamics // Journal of Applied Physics – 2008 – Vol. 104 – P. 113904 Индуктивная связь: [23] D. Bothner et al. Inductively coupled superconducting half wavelength resonators as persistent current traps for ultracold atoms // New Journal of Physics – 2013. Vol. 15 Ёмкостная+индуктивная связь: [24] M.S. Khalil et al. An analysis method for asymmetric resonator transmission applied to superconducting devices // Journal of Applied Physics -- Vol. 111, no. 5. **Распределённая связь: [37] I. Besedin,** A.P. Menushenkov. Quality factor of a transmission line coupled coplanar waveguide resonator // EPJ Quantum Technology – 2018 – Vol.5, no. 5 – P. 2.

Конформное отображение

$$\begin{aligned} \frac{\partial \mathbf{V}}{\partial z} &= -\mathbf{L} \frac{\partial \mathbf{I}}{\partial t}, \\ \frac{\partial \mathbf{I}}{\partial z} &= -\mathbf{C} \frac{\partial \mathbf{V}}{\partial t}. \end{aligned}$$

Телеграфные уравнения для многопроводной линии передач

L, **C** – матрицы взаимной индуктивности и ёмкости

 c_0, c_3 неявно определы через $\text{Im}[w(c_0)] = 0, \text{Im}[w(c_3)] = 0$

Четвертьволновой резонатор

$$\begin{split} \psi =& 2\pi \left(l_c + 2 l_o \right) f_r^{(0)} / c_l, \\ \theta =& 2\pi l_c f_r^{(0)} / c_l. \end{split}$$

Аналитическое выражение для сдвига полюсов амплитуды рассеяния

$$\begin{split} \frac{\partial \Delta^a}{\partial f} = &\frac{32\pi}{c_l} \left(-1 \right)^p Z_r^3 \left(l_c + l_o + l_s \right) \times \\ & \left(-Z_f \left(Z_i + Z_0 \right) \cos \theta + i \left(Z_f^2 + Z_i Z_o \right) \sin \theta \right) \\ \frac{\partial \Delta^a}{\partial Z_2} = & -16 \left(-1 \right)^p Z_r^2 \sin \theta \cos \psi \times \\ & \left(-Z_f \left(Z_i + Z_o \right) \cos \theta + i \left(Z_f^2 + Z_i Z_o \right) \sin \theta \right) \\ \frac{\partial \Delta^a}{\partial \kappa} = & 0, \\ \frac{\partial^2 \Delta^a}{\partial \kappa^2} = & 16 \left(-1 \right)^p Z_r^3 \sin \theta \times \\ & \left(Z_f \left(Z_o - Z_i \right) \sin \psi \sin \theta - \right. \\ & Z_f \left(Z_i + Z_o \right) \left(2 \cos \psi \cos \theta + 1 \right) + \\ & i \left(3Z_f^2 + Z_i Z_o \right) \sin \theta \cos \psi \right), \end{split}$$

Согласованная по импедансу передающая линия

$$Z_i = Z_f = Z_o$$
$$Q_c = \frac{\pi(2p-1)}{2\kappa^2 \sin^2\theta}$$

Сравнение с трёхмерной симуляцией

Согласованная по импедансу передающая линия

$$Z_i = Z_f = Z_o$$

$$Q_c = \frac{\pi(2p-1)}{2\kappa^2 \sin^2\theta}$$

Большая связь с линией в 3D симуляции обусловлена связью за пределами секции ответвителя

Part 3 Трансмон в трёхмерной полости

Трансмон в трёхмерной полостиы

$$\begin{split} \hat{H}/\hbar = & \left(\omega_{\rm RF}^q + \frac{1}{2} \delta_q \left(\hat{a}^\dagger \hat{a} - 1 \right) \right) \hat{a}^\dagger \hat{a} + \\ & \left(\omega_{\rm RF}^r + \frac{1}{2} \delta_r \left(\hat{b}^\dagger \hat{b} - 1 \right) \right) \hat{b}^\dagger \hat{b} + \\ & \chi \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right) \left(\hat{b}^\dagger \hat{b} + \frac{1}{2} \right), \end{split}$$

Параметры памильтониана из 3D FEM:

$$\frac{\omega_r}{2\pi} = 9,56 \text{ GHz}, \qquad \frac{\delta_r}{2\pi} \sim -1 \text{ Hz}$$
$$\frac{\omega_q}{2\pi} = 6,56 \text{ GHz}, \qquad \frac{\delta_q}{2\pi} = -174 \text{ MHz}$$

$$\chi = -1 \text{ MHz}$$

Спектроскопия

16.08.2021

Импульсные отклик

Осцилляции Раби

16.08.2021

Осцилляции Рамзея и энергетическая релаксация

Фазовые ошибки и гауссовые импульсы

Трёхуровневая модель для трансмона (представление вращающейся волны)

$$\widehat{H} = \begin{pmatrix} 0 & \Omega(t) & 0 \\ \Omega^*(t) & \Delta & \sqrt{2}\Omega(t) \\ 0 & \sqrt{2}\Omega^*(t) & 2\Delta + \delta \end{pmatrix}$$

Переходы $|1\rangle \rightarrow |2\rangle$
Утечка из
вычислительного
подпространства +
фазовые ошибки
 $\widehat{\Omega}(t)$
Диабатические переходы
t

 $\Omega(t) = I(t) + iQ(t)$ Гауссовые DRAG импульсы $I(t) = \begin{cases} A \left(e^{-\frac{t^2}{2\sigma_t^2}} - e^{-\frac{T_p^2}{8\sigma_t^2}} \right), & \text{если} |t| < \frac{T_p}{2}, \\ 0, & \text{иначе,} \end{cases}$ $Q(t) = -lpha rac{\dot{I}(t)}{s}$ $\sigma_t = 6$ нс, $T_p = 24$ нс $\hat{U}_{\text{DRAG}} = e^{\frac{I(t)}{2\delta} \left(\hat{a} - \hat{a}^{\dagger} \right)} \quad \hat{H}' = \hat{U}^{\dagger} \hat{H} \hat{U} + i\hbar \hat{U}^{\dagger} \frac{\partial \hat{U}}{\partial t}$ Диабатические переходы $\frac{\hat{H}'}{\hbar} = \begin{pmatrix} 0 & I - iQ & \frac{\sqrt{2}I^2}{8\delta} \\ I + iQ & \Delta - \frac{I^2}{2\delta} & -i(Q + \frac{\dot{I}}{\delta}) \\ \frac{\sqrt{2}I^2}{8\delta} & i(Q + \frac{\dot{I}}{\delta}) & 2\Delta + \delta + \frac{3I^2}{2\delta} \end{pmatrix}$ Нет утечки при $\alpha = 1$

Рандомизированное тестирование (Randomized benchmarking)

Рандомизированное тестирование операций из группы Клиффорда: Группа Клиффорда: нормализатор группы Паули (группа вращений куба)

Группа Клиффорда является 2-дизайном: $\langle \mathcal{F} \rangle(n) \sim e^{-\langle \mathcal{F} \rangle(1)n}$

Разработка сверхпроводящих кубитов в России

И.С.Беседин, Г.П.Федоров, А.Ю.Дмитриев, В.В.Рязанов

16.08.2021

Part 4 Двухкубитные квантовый процессор

Образец

Модель электрической цепи и Гамильтониан

16.08.20

Слабо ангармогнические осцилляторы:

- Заменяем SIS линеаризованной индуктивностью
- Находим линейные моды
- Теория возмущений по нелинейности SISoв

$$\hat{H}^D/\hbar = \sum_m \omega_m \hat{a}_m^\dagger \hat{a}_m + \frac{1}{2} \sum_{m,n} K_{mn} \hat{a}_m^\dagger \hat{a}_m \hat{a}_n^\dagger \hat{a}_n.$$

Параметры Гамильтониана

$$\hat{H}^D/\hbar = \sum_m \omega_m \hat{a}_m^\dagger \hat{a}_m + \frac{1}{2} \sum_{m,n} K_{mn} \hat{a}_m^\dagger \hat{a}_m \hat{a}_n^\dagger \hat{a}_n$$

 $n=m\in q, K_{mn}$ ангармонизмы $n\in q, m\in r, K_{mn}$ дисперсионный сдвиг $m\neq n\in q, K_{mn}$ ZZ связь

Матрица кросс-Керровских нелинейностей K_{mn} ($\Phi_0 = 0$)

		0 (q1)	1 (q2)	2 (r1)	3 (r2)	4 (c)	5 (rc)
	0 (q1)	-209.598	0.001	-0.759	-0.000	-0.310	-0.004
	1 (q2)	0.001	-209.559	-0.000	-0.780	-0.339	-0.004
	2 (r1)	-0.759	-0.000	-0.001	-0.000	-0.004	-0.000
	3 (r2)	-0.000	-0.780	-0.000	-0.001	-0.007	-0.000
	4 (c)	-0.310	-0.339	-0.004	-0.007	-111.716	-2.942
	5 (rc)	-0.004	-0.004	-0.000	-0.000	-2.942	-0.019
16.08.2021							

Радиационные времена релаксации				
мод ($\Phi_0=0$)				

Mode	q1	q2	r1	r2	С	rc
<i>T</i> ₁ , μs	810	680	0.17	0.11	143	0.10

Нестационарный поток в элементе связи

Нестационарные индуктивности

SIS контактов => собственные состояния меняются

$$\hat{H}' = \hat{U}\hat{H}\hat{U}^{\dagger} - i\hbar\hat{U}\frac{\partial\hat{U}^{\dagger}}{\partial t}$$

 $\hat{V}^D(t) = -i\hbar \hat{U} \frac{\partial U^\dagger}{\partial \Phi_x} \times \frac{\partial \Phi_x}{\partial t}.$

слайд 29

Параметрическая модуляция (в резонансе с переходом 01 – 10):

$$\begin{split} \Phi_x(t) &= \Phi_x^{\rm dc} + \Phi_x^{\rm ac}(t) \cos\left(\omega_m t + \varphi_m(t)\right) \\ & (\Phi_x^{\rm dc} = 0) \end{split}$$

$$\begin{split} \frac{\hat{H}_{\rm eff}(t)}{\hbar} &= -\frac{\omega_1 + \delta\omega_1}{2} \hat{\sigma}_{z1} - \frac{\omega_2 + \delta\omega_2}{2} \hat{\sigma}_{z2} - \frac{\zeta}{4} \hat{\sigma}_{z1} \hat{\sigma}_{z2} + \\ \Omega_{\rm iSWAP} \sin\left(2\omega_m t + 2\varphi_m(t)\right) \left(\hat{\sigma}_{-1} \hat{\sigma}_{+2} + \hat{\sigma}_{+1} \hat{\sigma}_{-2}\right) & \Omega_{\rm iSWAP} \sim (\Phi_x^{\rm ac})^2 \end{split}$$

 $\delta \omega_1, \delta \omega_2 \sim (\Phi_x^{\rm ac})^2$ частоты кубитных мод немного сдивгаются при изменении индуктивности в элементе связи

Микроволновая схема установки

- Квадратурные смесители для повышения и понижения частоты
- Гетеродин общий на оба кубита
- Синхронизация за счёт одного AWG

Однокубитные калибровки

- Осцилляции Раби
- Единовременное считывание
- Точная частота кубитов из осцилляций Рамзея
- Калибровка гауссовых импульсов ($\sigma = 8$ нс, T = 32 нс) Одновременное однокубитное рандимизорованное тестирование
- Single-shot calibration

Длина случайной последовательности

Калибровка двухкубитного вентиля

16.08.2021

Двухкубитная томография квантового процесса

• Квантовый процесс $\Lambda:$ $\hat{\rho}_{\rm out}=\Lambda(\hat{\rho}_{\rm in})$

Квантовый процесс можно представить в базисе матрицы переноса Паули

16.08.2021

Алгоритм Гровера

Дано: квантовая процедура U_{ω} в виде чёрного ящика $U_{\omega}|x\rangle = \begin{cases} |x\rangle, x \neq \omega \\ -|x\rangle, x = \omega \end{cases}$

Найти: ω

Аглоритм Гровера:

- 1. Приготовить все кубиты в состоянии суперпозиции.
- 2. Последовательно выполнять U_{ω} и квантовую процедуру U_s (гроверовское отражение) $\sim 2^{N/2}$ раз (N = число кубитов).
- 3. Считать кубиты. Результат считывания -- ω.

Результаты выполнения алгоритма Гровера

Классический предел: вероятность угадать ω со второй попытки (1/2)

Глава 5 Цепочка трансмонов

Симулятор модели Бозе-Хаббарда

Задача спектроскопии: driven dissipative dynamics

$$\begin{aligned} \hat{\mathcal{H}}_{\text{RWA}}/h &= \sum_{q=1}^{N} \left[(f_q - f_d) \hat{n}_q + \frac{\delta}{2} \hat{n}_q (\hat{n}_q - 1) \right] + \\ &\sum_{q=1}^{(N-1)/2} \left[J_1 (\hat{a}_{2q}^{\dagger} \hat{a}_{2q-1} + \hat{a}_{2q-1}^{\dagger} \hat{a}_{2q}) + J_2 (\hat{a}_{2q}^{\dagger} \hat{a}_{2q+1} + \hat{a}_{2q+1}^{\dagger} \hat{n}_{2q+1} + \hat{a}_{2q+1}^{\dagger} \hat{n}_{1} + \frac{\Omega}{4\pi} (\hat{n}_s + \hat{a}_s^{\dagger}) \right] \\ &\quad + \frac{\Omega}{4\pi} (\hat{n}_s + \hat{a}_s^{\dagger}) \\ \\ \frac{\partial \hat{\rho}}{\partial t} &= -\frac{i}{\hbar} \left[\hat{\mathcal{H}}_{\text{RWA}}, \hat{\rho} \right] + \sum_{q=1}^{N} \gamma_{L} \mathcal{L} [\hat{a}_{q}] \hat{\rho} + \gamma_{T} \mathcal{L} [\hat{a}_{q}^{\dagger}] \hat{\rho} + \frac{\gamma_{\phi}}{2} \mathcal{L} [\hat{n}_{q}] \hat{\rho} \\ &\quad + \frac{1}{2} \left[\hat{c}^{\dagger} \hat{c} \hat{\rho} + \hat{\rho} \hat{c}^{\dagger} \hat{c} \right] \\ &\quad \langle n \rangle = \text{Tr} \left[\hat{\rho}_{ss} \hat{n}_{s} \right] \end{aligned}$$

Однофотонный спектр (11 кубитов)

16.08.2021

Дублонные зоны

Выводы

- Разработана математическая модель для связи резонатора на основе копланарного волновода с передающей линией. Математическая модель пригодна для прототипирования устройств, использующих частотно-мультиплексированное считывание с помощью сверхпроводниковых микроволновых копланарных резонаторов.
- 2. Развита техника проектирования и расчёта характеристик трансмонов связанных как с объёмными, так и с копланарным резонаторами.
- Развита техника экспериментальных измерений характеристик сверхпроводниковых кубитов и калибровки микроволновых импульсов для реализации квантовых вентилей.
- Разработана топология двухкубитной схемы с перестраиваемым элементом связи между кубитами, пригодной для реализации двухкубитного вентиля iSWAP.
 Продемонстрирована работа алгоритма Гровера.
- Предложен и исследован сверхпроводниковый квантовый метаматериал, содержащий цепочку из 11 кубитов-трансмонов, реализующий модели Бозе-Хаббарда и Су-Шриффера-Хигера. С помощью микроволновой спектроскопии обнаружен краевой дублон - топологически локализованное связанное состояние двух фотонов.

Спасибо

Alexey Ustinov	BMSTU/VNIIA	RQC	loffe Institute	
Nikolai Abramov	Ilya Rodionov	Alexey Ustinov	Alexander Poddubny	
Ilya Moskalenko	Alina Dobronosova	Gleb Fedorov		
Ivan Tsitsilin	Anastasia Pishimova	Elena Yegorova		
Sasha Grigoryev	Many others	ISSP RAS		
Vasilisa Usova	ΙΤΜΟ	Valery Ryazanov		
	Maxim Gorlach			

\$\$\$ FPI, Ministry for Education, Rosatom, Russian Science Foundation \$\$\$

Спасибо за внимание!

