Compact Ion-Trap Quantum Computing Demonstrator

<u>Ivan Pogorelov</u>, Thomas Feldker, Christian Marciniak, Georg Jacob, Oliver Krieglsteiner, Michael Meth, Lukas Postler Thomas Monz, Philipp Schiendler, Rainer Blatt

<u>Outline</u>

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

RF – 10 W @ 25 MHz DC – 1000 V

Trap: motional modes

2021-11-24

System state

0.1 – 3 MHz

)N

10 MHz – 400 THz (various qubit types)

2021-11-24

<u>Outline</u>

1. Trapping

2. State manipulation

- ⁴⁰Ca⁺
- Optical pumping
- Sideband cooling
- Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

⁴⁰Ca⁺

⁴⁰Ca⁺

universität innsbruck

2021-11-24

Optical pumping

2021-11-24

Sideband cooling

2021-11-24

Sideband cooling

A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

Shantanu Debnath, Doctor of Philosophy, 2016

2021-11-24

A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

Shantanu Debnath, Doctor of Philosophy, 2016

universität innsbruck

2021-11-24

A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

Shantanu Debnath, Doctor of Philosophy, 2016

universität innsbruck

2021-11-24

A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

Shantanu Debnath, Doctor of Philosophy, 2016

universität innsbruck

2021-11-24

<u>Outline</u>

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection

3. Qubit manipulation

- Single qubit gate
- MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

Single qubit gates

$$R(\theta) = e^{-i\frac{\theta}{2}\vec{n}\cdot\vec{\sigma}}$$

Single qubit gates

$$R_{xy}(\theta,\phi) = e^{-i\frac{\theta}{2}(\sigma_x \cos\phi + \sigma_y \sin\phi)}$$

$$R_{xy}(\theta,\phi) = e^{-i\frac{\theta}{2}(\sigma_x \cos\phi + \sigma_y \sin\phi)}$$

$$R_z(\theta) = e^{-i\frac{\theta}{2}\sigma_z}$$

<u>Outline</u>

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate

4. Pulse sequence

5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

Pulse sequence

<u>Outline</u>

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

Scaling: long chain

With longer chains:

- More RF power
- Harder to address

Scaling: long chain

With longer chains:

- More RF power
- Harder to address

Scaling: long chain

With longer chains:

- More RF power
- Harder to address

2021-11-24

Scaling: spectrum

2021-11-24

Scaling: spectrum

Scaling: spectrum

Axial:

- More cross-talk
- Higher heating rates

Radial:

- Modes are too close
- Axials are too hot

1

ϤϢͳΙΟΙ

universität innsbruck

ON

2021-11-24

universität innsbruck

2021-11-24

Modulated MS gate

Modulated MS gate

Modulated MS gate

'Scalable solutions'

Daniel Slichter, NIST/OSA Quantum 2.0 Conference

Brown, K et al. npj Quantum Inf 2, 16034 (2016)

2021-11-24

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

AQTION project (not OAQT)

AQTION project (not OAQT)

Compact optics

Trap drawer

Vibration isolation

	Noise	Opt. table	Full w/o fans	Full w/ fans
$RMS_{hor.}$ (nm)	54	21	61	275
$RMS_{vert.}$ (nm)	50	33	139	335

Single ion addressing

2021-11-24

ON

DN

DN

AOD

ullet

•

universität innsbruck

<u>Addressing unit – cross-talk</u>

lon 1

Addressing unit – cross-talk

lon 1

2021-11-24

• 4

3

2

0

Addressing unit – cross-talk

lon 1

2021-11-24

<u>Qiskit compatible</u>

GHZ state - 3 qubits

[1]: from qiskit import QuantumCircuit

Init API

[2]: from qiskit_aqt_provider import AQTProvider, aqt_pass_manager aqt = AQTProvider('MY_TOKEN') backend_aqt = aqt.backends.aqtion_innsbruck

Transpile to ion trapping device

[3]: pass_manager = aqt_pass_manager()
aqt_qc = pass_manager.run(qc)
aqt_qc.draw('mpl')

- Measure
- [4]: from qiskit.visualization import plot_histogram

job = backend_aqt.run(aqt_qc)
result = job.result()
plot_histogram(result.get_counts(), figsize=(7,2))

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

General

 Laser frequency & magnetic field

Single-qubit gates

- Addressing
- Amplitudes

Two-qubit gates

- Trap modes
- Amplitudes
- Phases

Overall budget

General

 Laser frequency & magnetic field

Single-qubit gates

- Addressing
- Amplitudes

Two-qubit gates

- Trap modes
- Amplitudes
- Phases

Overall budget

Laser frequency & magnetic field

Required for:

- Optical pumping
- Sideband cooling
- Single-qubit gates
- Two-qubit gates
- Shelving

2021-11-24

universität innsbruck

universität innsbruck

universität innsbruck

2021-11-24
Laser frequency & magnetic field – drift

- Extrapolates cavity drift
- Applies correction before each measurement

<u>Outline</u>

General

Laser frequency
 & magnetic field

Single-qubit gates

- Addressing
- Amplitudes

Two-qubit gates

- Trap modes
- Amplitudes
- Phases

Overall budget

Addressing unit

universität innsbruck

• Individual phase/power adjustment

Addressing unit

• Individual phase/power adjustment

<u>Addressing unit – calibration</u>

<u>Addressing unit – calibration</u>

 Updates horizontal position for each ion individually

Addressing unit – calibration

 Updates horizontal position for each ion individually

- Updates vertical position for all ions based on averaged value
- Tracks tilt

Addressing unit – calibration

 Updates horizontal position for each ion individually

- Updates vertical position for all ions based on averaged value
- Tracks tilt

Single qubit gates

$$H = \hbar \Omega \sigma_+ e^{-i(\omega - \omega_{SD})t - \phi} e^{i\eta(ae^{-i\nu t} + a^{\dagger}e^{i\nu t})} + h.c.$$

Single qubit gates

Laser frequency & magnetic field

$$H = \hbar \Omega \sigma_{+} e^{-i(\omega - \omega_{SD})t - \phi)} e^{i\eta(ae^{-i\nu t} + a^{\dagger}e^{i\nu t})} + h.c.$$

Single qubit gates

Laser frequency & magnetic field

Trap parameters

 $H = \hbar \Omega \sigma_{+} e^{-i(\omega - \omega_{SD})t - \phi)} e^{i\eta(ae^{-i\nu t} + a^{\dagger}e^{i\nu t})}$ +h.c.

 $S\rangle$

 $S\rangle$

universität innsbruck

<u>Single qubit gates – calibration</u>

Robust phase estimation on each ion

Single qubit gates – calibration

Robust phase estimation on each ion

- Fixed pulse time
- All ions in one sequence
- Done 2 times to avoid cross-talk
 - 1.
 •
 •
 •
 •

 2.
 •
 •
 •
 •
- Adjusts addressing amplitudes

Single qubit gates – calibration

Robust phase estimation on each ion

- Fixed pulse time
- All ions in one sequence
- Done 2 times to avoid cross-talk
 - 2. Adjusts addressing amplitudes

Same Rabi frequency for all ions

Single qubit gates – calibration

Robust phase estimation on each ion

Fixed pulse time

innsbruck

- All ions in one sequence
- Done 2 times to avoid cross-talk
 - 2. Adjusts addressing amplitudes

Same Rabi frequency for all ions

Every 30 mins

<u>Outline</u>

General

Laser frequency
 & magnetic field

Single-qubit gates

- Addressing
- Amplitudes

Two-qubit gates

- Trap modes
- Amplitudes
- Phases

Overall budget

<u>MS gate</u> H(t) =

ЭN

<u>MS gate</u> H(t) =

Central line detuned

- Central line detuning depends on intensity
- Induces phase shift (depends on intensity)
 Result:
- Gates are intensity sensitive
- Each ion pair needs individual calibration

Central line detuned	With 3 rd tone
 Central line detuning depends on intensity Induces phase shift (depends on intensity) Result: Gates are intensity sensitive <u>Each ion pair needs individual calibration</u> 	
$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\$	

н

Central line detuned	With 3 rd tone
 Central line detuning depends on intensity Induces phase shift (depends on intensity) Result: Gates are intensity sensitive Each ion pair needs individual calibration 	 3rd tone params doesn't depend on intensity No phase shifts Result: Gates are less intensity sensitive Single parameter set for all ion pairs

<u>MS gate – variants</u>

MS gate with 3rd tone – power corrections

Spectator modes become important as chains grow longer

- Accumulation of geometric phase different along chain
- Imperfect spin-motional disentanglement

Long-term solution: Modulated gates

Medium chains: Analytic power correction

- Chose gate duration to close phase space for 1st and 2nd mode simultaneously
- Adjust powers to accumulate same phase

<u>MS gate with 3rd tone – power corrections</u>

Spectator modes become important as chains grow longer

- Accumulation of geometric phase different along chain
- Imperfect spin-motional disentanglement

Long-term solution: Modulated gates

Medium chains: Analytic power correction

- Chose gate duration to close phase space for 1st and 2nd mode simultaneously
- Adjust powers to accumulate same phase

Option 1:

Calibrate gate on a single ion pair

Option 1:

Calibrate gate on a single ion pair

Every 30 mins

Option 2:

Calibrate gate via full register GHZ state

Involves n-1 gates for n-ion chain

Option 2:

Calibrate gate via full register 16 ions GHZ state

MS gate with 3rd tone – calibration

Option 2:

Calibrate gate via full register 16 ions GHZ state

Fit

 $|SS\dots SS\rangle + |DD\dots DD\rangle$

MS gate with 3rd tone – calibration

Option 2:

universität innsbruck

Calibrate gate via full register 16 ions GHZ state

Fit

 $|SS\dots SS\rangle + |DD\dots DD\rangle$

Every 30 mins

2021-11-24

<u>MS gate with 3rd tone – various pairs</u>

Calibrate one set of parameters, check behaviour for different pairs

<u>MS gate with 3rd tone – various pairs</u>

Fidelity decay is consistent, Stark shifts are compensated across chain

Radial trap modes drift due to RF power fluctuations

- Fast RF power stabilization
- Slow drifts compensation feed back to RF power level set point

Radial trap modes drift due to RF power fluctuations

- Fast RF power stabilization
- Slow drifts compensation feed back to RF power level set point

Radial trap modes drift due to RF power fluctuations

- Fast RF power stabilization
- Slow drifts compensation feed back to RF power level set point

Radial trap modes drift due to RF power fluctuations

- Fast RF power stabilization
- Slow drifts compensation feed back to RF power level set point

+3.27e3

0.4

0.3

0.2

0.1

0.0

Radial COM mode (kHz)

Measured

Target

±70*Hz*

<u>Outline</u>

General

Laser frequency
& magnetic field

Single-qubit gates

- Addressing
- Amplitudes

Two-qubit gates

- Trap modes
- Amplitudes
- Phases

Overall budget

	Repeat (mins)	Approx. time spent (s)
Frequency scan	20	13
COM mode scan	10	22
AOD scans	30	88
RPE	30	44
MS Scans	30	110

	Repeat (mins)	Approx. time spent (s)
Frequency scan	20	13
COM mode scan	10	22
AOD scans	30	88
RPE	30	44
MS Scans	30	110

82%

2021-11-24

<u>Outline</u>

- 1. Trapping
- 2. State manipulation
 - ⁴⁰Ca⁺
 - Optical pumping
 - Sideband cooling
 - Detection
- 3. Qubit manipulation
 - Single qubit gate
 - MS gate
- 4. Pulse sequence
- 5. Scaling problems

- 6. AQTION platform
 - Compact optics
 - Trap drawer
 - Vibrations
 - Addressing
- 7. Automation
 - Keeping constant fidelity
- 8. Performance
 - Benchmarking
 - Quantum volume

Single-qubit

F = 99.51 ± 0.05 %

Single-qubit F = 99.51 ± 0.05 %

Single-qubit	Two-qubit
F = 99.51 ± 0.05 %	F ≈ 97.6 %

Single-qubitTwo-qubit $F = 99.51 \pm 0.05 \%$ $F \approx 97.6 \%$

3 Number of gates

5

10

Number of Cliffords

15

20

.0

0.9 -

0.8

Success probability

Single-qubitTwo $F = 99.51 \pm 0.05 \%$ $F \approx$

Two-qubit F ≈ 97.6 %

	Fidelity (%)
State init	99.8
Readout	> 99.7
Single-qubit	99.5
Two-qubit	≈ 97.6

<u>Quantum volume – 6 ions</u>

2021-11-24

<u>Complexity illustration – Color code</u>

106 SQ gates

65 MS gates

Manuscript is in preparation

<u>AQTION – (Mostly) finished projects</u>

- » Metrology
 - Optimal metrology with programmable quantum sensors
 - Multiparameter estimation with Holevo Cramér-Rao bound
- » Quantum information
 - Color code
- » Industry collaborations
 - Privacy and randomness amplification (CQC)
 - Quantum-enhanced portfolio estimation
 - (Multiverse Computing)

Ivan Pogorelov

Marciniak

Thomas Feldker

Philipp Schindler

Thomas Monz

Rainer Blatt

Pogorelov5@yandex.ru Ivan.Pogorelov@uibk.ac.at

Thank you for the attention!

2021-11-24

MSU Quantum technology centre