

Agency for Science, Technology and Research SINGAPORE

INFRARED METROLOGY WITH VISIBLE LIGHT

Dr Leonid Krivitsky Principal Scientist, Department Head

Institute for Materials Research and Engineering (IMRE), A*STAR

Talk at the MSU Quantum Technology Center

23 Oct 2021

Outline

Introduction and motivation	3	
IR spectroscopy with visible light	9	Sensing
Nonlinear interference in crystal superlattices	15 _	
IR optical coherence tomography	24 Imaging 30	
Wide field hyperspectral imaging		

Introduction and motivation

Infrared light for materials fingerprinting & sensing

Industrial use:

- ✓ Greenhouse gas and pollution
- Semiconductor manufacturing
- Pharmaceutical analysis

Defence and security:

Threat detection (chemical, explosive)

Medical diagnostics:

- Breath analysis
- Tissue pathology
- ✓ Stem cell research

(1001) 1001

Challenges of IR metrology

Capability gap: High cost and limited performance of existing IR-range spectral instruments

- Requires specialized IR-range optics
- Inferior performance of light sources and detectors
- High cost (~25.000\$-250.000\$)

IR metrology with visible light?

Value proposition: exploit effects of quantum optics to measure IR properties using visible range equipment

- Well developed optical materials
- A variety of lasers and detectors
- Low-cost and efficient

01001 1001

01001) 1001

(1001) 1001

()

(1001) 1001

()

(1001) 1001

•

CREATING GROWTH, ENHANCING LIVES

Applications of NL interferometers

Kalashnikov et al Nat.Phot. ('16) Lemos et al Nature ('14) Spectroscopy Paterova et al SciRep ('17) Lahiri et al PRA ('15) Paterova et al NJP ('18) Paterova et al QST ('18) maging **Reviews**: Yurke et al PRA ('86) Chekhova, Ou Adv in Opt & Phot ('16); Ou, Li APL Findamentals Phot ('20) Metrology Wang et al PRA ('91) Grayson et al PRA ('94) Herzog et al PRL ('94) Hudelist et al NatComm ('14) Heuer et al PRA ('15) Vergyris et al APL ('20) Lahiri et al PRA ('17)

IR spectroscopy with visible light

×

Ð

- D Kalashnikov et al. Nature Photonics 10, 98–101 (2016)
- A Paterova et al. Scientific Reports 7, 42608 (2017)
- A Paterova et al. New Journal of Physics 20, 043015 (2018)

Single-rail nonlinear interferometer

$$I_s \propto \operatorname{sinc}^2\left(\Delta k \cdot L/2\right)\left(1 + |\tau| \cdot \cos\left(\varphi_s + \varphi_i - \varphi_p\right)\right)$$

$$I_s \propto \operatorname{sinc}^2\left(\Delta k \cdot L/2\right) \left(1 + |\tau| \cdot \cos\left(\varphi_s + \varphi_i - \varphi_p\right)\right)$$

- Measurements of the IR properties of the material
- Tunable range of wavelengths

CO2 absorption

Studied media: CO₂ gas with absorption line @ 4.3 micron

λp=532nm ; λs=608nm ; λi=4.3 μm

Source: wikipedia

Experimental setup

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik and L. A. Krivitsky, «Infrared spectroscopy with visible light», *Nature Photonics*, **10**, 98–101 (2016).

Injecting the CO₂ gas

Results

Theoretical data: http://hitran.iao.ru

Nonlinear interference in crystal superlattices

- A Paterova, L. Krivitsky *Light: Science and Applications* 9, 82 (2020)
- D. Toa et al., *Quantum Science and Technology* (accepted) arXiv:2109.00690

Cascaded NL interferometer a.k.a. superlattice (2020)

Cascaded NL interferometer a.k.a. superlattice (2020)

16

•

Cascaded NL interferometer a.k.a. superlattice (2020)

First theoretical proposal D Klyshko JETPh 1993

Adapted from K. E. Dorfman Light: Science & Applications 9, 123 (2020)

16

(1001) 1001

Interference fringes in superlattice

$$\mathrm{I}_N(\omega_s, heta_s) = |F|^2 \propto \left\{\mathrm{sinc}igg(rac{\Delta kl}{2}igg)\cdotrac{\mathrm{sin}[N\phi/2]}{\mathrm{sin}[\phi/2]}
ight\}^2$$

Interference fringes in superlattice

$$\mathrm{I}_N(\omega_s, heta_s) = |F|^2 \propto \left\{\mathrm{sinc}\!\left(\!rac{\Delta kl}{2}\!
ight)\cdot\!rac{\mathrm{sin}[N\phi/2]}{\mathrm{sin}[\phi/2]}
ight\}^2$$

- Increased sensitivity
- ➤ Hard to realize experimentally

Measurement of the fringes

2-crystal interferometer: Δφ₂ = -(0.167 ± 0.015)π
 5-crystal interferometerΔφ₅ = -(0.187 ± 0.009)π.

Scaling of the width of the fringes

Scaling of the width of the fringes

Sensitivity study 1.2 2.5 Δθc Ideal case 1.0 $\Delta \lambda s$ theory $\Lambda l'$ 2.0 ^{Ns}θǫ/^{zs}θǫ ? 0.8 Intensity 0.6 0.4 0.2 experiment 0 0.1 0.2 0.3 0.4 0.5 θs (deg) 1.0 3 5 Major factor: Uncertainty in crystal 2 4 \succ Ν orientation

Scaling of the width of the fringes

Price to pay: stronger dependence on the uncertainty of the experimental parameters

Bi-PPLN Superlattice

Concept

- Consider the stacks as individual emitters
- Interference occurs between stacks
- Like classical diffraction

Schematic of biPPLN Superlattice

$$\begin{array}{l} \lambda_{pump} = 532 \ nm \\ l_{domain} = 5.16 \ \mu m \\ l_{stack} = \mathbf{n_{nl}} \times l_{domain} \\ l_{gap} = \mathbf{m_{gap}} \times l_{stack} \end{array}$$

4

Schematic of biPPLN Superlattice

$$\begin{array}{l} \lambda_{pump} = 532 \ nm \\ l_{domain} = 5.16 \ \mu m \\ l_{stack} = n_{nl} \times l_{domain} \\ l_{gap} = m_{gap} \times l_{stack} \end{array}$$

$$n_{nl} = 4, n_{gap} = 16, m_{gap} = 32$$

) ***

Schematic of biPPLN Superlattice

Customizable comb-like IR spectra

Exploring the parameter space

Design	Design Parameters			
	n_{nl}	n_{gap}	m_{gap}	
1	16	85 (!)	8	
2	64	21	8	
3	16	23	32	

 $\begin{array}{l} \lambda_{pump} = 532 \text{ nm (CW)} \\ \lambda_{signal} \sim 647 \text{ nm; } \lambda_{idler} \sim 3 \ \mu\text{m} \end{array}$

Crystal Physical Dimensions: 63.5 mm (L) \times 8.2 mm (W) \times 0.5 mm (H)

Exploring the parameter space

Toa, Z.S., A.V. Paterova, and L.A. Krivitsky, Broadband diffraction of correlated photons from crystal superlattices. Quantum Science and Technology arXiv preprint arXiv:2109.00690, 2021

CREATING GROWTH, ENHANCING LIVES

CREATING GROWTH, ENHANCING LIVES

IR optical coherence tomography

• A Paterova et al. *Quantum Science & Technology* 3, 025008 (2018)

Optical coherence tomography (OCT)

Optical coherence tomography (OCT)

ophthalmology

cardiology

Optical coherence tomography (OCT)

R. Su et al, Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics, Opt. Exp. 22(13), 15804-19 (2014)

A. Paterova, et al "Tunable Optical Coherence Tomography in the Infrared Range Using Visible Photons", *Quantum Science and Technology* **3** 025008 (2018)

Results: axial scans

Silicon window

Results: axial scans

Silicon window

Results: axial scans

Silicon window

Results: axial scans

Silicon window

All measurements with the same configuration

Wide field hyperspectral imaging

×

P

- A Paterova et al Science Advances, 6, 44, eabd0460 (2020);
- A Paterova et al Appl. Phys. Lett. 117, 054004 (2020);
- A Paterova et al Nanophotonics 10 (6), 1775-1784 (2021)

Conventional IR imaging techniques

- IR imaging over wide range of wavelengths
- ✓ Measurement of chemical maps
- ✓ High resolution
- * IR array detectors =>expensive
- * Often point by point imaging =>slow
- ^x Cryogenically cooled
- * Dual use => EC restrictions

Thermo Fisher SCIENTIFIC

Conventional IR imaging techniques

- IR imaging over wide range of wavelengths
- ✓ Measurement of chemical maps
- ✓ High resolution

DRS DAYLIGHT

- ✓ Visible range laser and camera => lower cost
- ✓ Wide field imaging => faster
- ✓ Room temperature operation
- ✓ No EC components

Experimental setup

Experimental setup

Hyperspectral imaging

fз

Ms

F3

Quality control of silicon chips

CREATING GROWTH, ENHANCING LIVES

A Paterova et al Appl. Phys. Lett. **117**, 054004 (2020) (Editor's Pick);

Quality control of silicon chips

- Imaging at 1550 nm with detection at 810 nm
- ✓ Fast readout of the system ~ 1 min
- Adjustable magnification
- \checkmark Achieved 2 μm spatial resolution

Wide field imaging through opaque Silicon layer

A Paterova et al Appl. Phys. Lett. **117**, 054004 (2020) (Editor's Pick);

(1001) 1001

()

CREATING GROWTH, ENHANCING LIVES

Hyperspectral microscopy

A Paterova et al Science Advances, 6, 44, eabd0460 (2020)

CREATING GROWTH, ENHANCING LIVES

Hyperspectral microscopy

A Paterova et al *Science Advances*, 6, 44, eabd0460 (2020)

Hyperspectral microscopy

A Paterova et al Science Advances, 6, 44, eabd0460 (2020)

1010 1001

Hyperspectral microscopy

A Paterova et al Science Advances, 6, 44, eabd0460 (2020)

(1001) 1001

Si- based metasurface with phase gradient

IR probe wavelength: 1550nm Detected wavelength: 812 nm

Our technique reveals the phase image of the object (metasurface) in the IR beam

(1001) 1001

•

8220 1.0kV 9.2mm x150 LM/UL

Imaging of IR metasurface

 A Paterova, D Kalashnikov et al Nanophotonics 10 (6), 1775-1784 (2021)

Summary and future work

We can substitute and/or complement conventional IR-methods, as we use well-developed components for the visible range.

Spectroscopy

Interferometry

We can substitute and/or complement conventional IR-methods, as we use well-developed components for the visible range.

Spectroscopy

Interferometry

Ongoing work:

- On-chip realization of nonlinear sensors
- Investigation of materials in far-IR
- Developing practical imaging system

QTE department at A*STAR

CREATING GROWTH, ENHANCING LIVES

QTE department at A*STAR

Publications:

- D Kalashnikov et al. Nature Photonics 10, 98–101 (2016)
- A Paterova et al. Scientific Reports 7, 42608 (2017)
- A Paterova et al. New Journal of Physics 20, 043015 (2018)
- A Paterova et al. Quant. Science & Technology 3, 025008, 2018
- A Paterova et al. Optics Express 27 (3), 2589-2603 (2019)
- A Paterova, Krivitsky Light: Science and Applications 9, 82 (2020)
- D Toa et al., Quantum Science and Technology Arxiv 2109:00690 (2021)
- A Paterova et al Appl. Phys. Lett. **117**, 054004 (2020);
- A Paterova et al Science Advances, 6, 44, eabd0460 (2020)
- A Paterova D Kalashnikov et al Nanophotonics 10 (6), 1775-1784 (2021)

IR spectroscopy

- IR OCT and polarimetry
 - Crystal superlattice
 - IR imaging

Contact us

Leonid Krivitsky

Head, Quantum Technologies for engineering Department Institute of Materials Research and Engineering Tel: 67149043 Email: <u>Leonid Krivitsky@imre.a-star.edu.sg</u>; biphoton@gmail.com

Si slab

SiO₂

2 µm

CREATING GROWTH, ENHANCING LIVES

THANK YOU

www.a-star.edu.sg