

Photonic properties of 1D-ordered cold atoms

William Guerin

Institut de Physique de Nice (INPHYNI)

Université Côte d'Azur & CNRS

https://inphyni.univ-cotedazur.eu/sites/cold-atoms

Optics in periodic media: an old subject

<u>Rayleigh</u>:

"On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure", *Philosophical Magazine* **24**, 145 (1887).

"On the reflection of light from a regularly stratified medium", Proc. Royal Society of London 93, 565 (1917).

Active medium + periodic modulation: distributed feedback laser (DFB)

Kogelnik & Shank, Appl. Phys. Lett. 18, 152 (1971)

Optics in periodic media: photonic crystals

VOLUME 58, NUMBER 20

PHYSICAL REVIEW LETTERS

18 MAY 1987

Inhibited Spontaneous Emission in Solid-State Physics and Electronics

Eli Yablonovitch Bell Communications Research, Navesink Research Center, Red Bank, New Jersey 07701 (Received 23 December 1986)

3-D

 \rightarrow Birth of a new field: photonic crystals / nanophotonics

- \rightarrow Bloch theorem
- \rightarrow Band structure / dispersion relations
- \rightarrow Avoided crossing between bands
- \rightarrow Band gaps

Optics in periodic media: 2D photonic crystals

Planar waveguides and cavities

Photonic crystal fibers

Optics in periodic media: 3D photonic crystals

Yablonovite

Woodpile

Optics in periodic media: a major topic

Active medium + photonic crystal

 \rightarrow "Photonic crystal lasers" / "nanolasers"

Why ? Atoms are different !

- Very narrow spectral features (\approx MHz), highly dispersive \rightarrow tunability, new effects ?
- Versatile, very nonlinear \rightarrow new possibilities, new effects ?

Optical lattices / Photonic crystals

Photonic band gaps in 1D optical lattices

 PHYSICAL REVIEW A
 VOLUME 52, NUMBER 2
 AUGUST 1995

 Photonic band gaps in optical lattices
 I. H. Deutsch, R. J. C. Spreeuw,* S. L. Rolston, and W. D. Phillips

 National Institute of Standards and Technology, PHYS A167, Gaithersburg, Maryland 20899
 AUGUST 1995

(Received 31 August 1994; revised manuscript received 5 December 1994)

→ Theoretical prediction with quasiresonant 1D lattices (red or blue-detuned)

No experimental observation !

<u>Bloch-Floquet theorem in 1D</u>: every lossless, infinite, periodic system has a band gap.

(index modulation small \rightarrow gap narrow, but always there)

 \rightarrow PBG in 1D: trivial

But we're experimentalists !

We **don't** have:

- an infinite medium
- a lossless medium
- a perfectly periodic medium

Necessary size ? depends on the index contrast Atomic vapors: $\rho \approx 10^{11} \cdot 10^{12} \text{ cm}^{-3}$ $n - 1 \propto \rho \text{Re}(\alpha)$ $\rightarrow n - 1 \approx 10^{-4} \cdot 10^{-3}$

 \rightarrow we need several 10³ layers !

<u>Bloch-Floquet theorem in 1D</u>: every lossless, infinite, periodic system has a band gap.

(index modulation small \rightarrow gap narrow, but always there)

 \rightarrow PBG in 1D: trivial

But we're experimentalists !

<u>Bloch-Floquet theorem in 1D</u>: every lossless, infinite, periodic system has a band gap.

(index modulation small \rightarrow gap narrow, but always there)

 \rightarrow PBG in 1D: trivial

But we're experimentalists !

We **don't** have:

- an infinite medium
- a lossless medium
- a perfectly periodic medium

The atomic distribution along the lattice is inhomogeneous

<u>Bloch-Floquet theorem in 1D</u>: every lossless, infinite, periodic system has a band gap.

(index modulation small \rightarrow gap narrow, but always there)

 \rightarrow PBG in 1D: trivial

But we're experimentalists!

We **don't** have:

- an infinite medium
- a lossless medium
- a perfectly periodic medium

- \rightarrow What is the best we can achieve?
- \rightarrow And what can we do with such a system?

Experiments done at Tübingen (Germany) between 2010 and 2012

1) Photonic band gaps with two-level atoms

2) Photonic band gaps with EIT

3) Temporal dynamical effects

On-going experiments at Nice

Experiments done at Tübingen (Germany) between 2010 and 2012

1) Photonic band gaps with two-level atoms

2) Photonic band gaps with EIT

3) Temporal dynamical effects - On-going experiments at Nice

Experimental setup

Atoms: laser-cooled ⁸⁷Rb, λ_0 = 780.24 nm.

Lattice beam: tunable Ti-Sa laser, 1W, waist 200 μ m, wavelength $\lambda_{dip} > \lambda_0$.

Detection tools: probe beam and avalanche photodiodes (APD).

Measurements: transmission T and reflection R spectra.

Experimental setup

Experimental setup

 $\theta \approx 0$: lattice too close to resonance & difficult detection.

 θ too large : limited interaction length, or equivalently, limited number of reflections.

→ Good trade-off: $\theta \approx 2^{\circ}$

Bragg condition

- Lattice periodicity: $\lambda_{dip}/2 \rightarrow K_{lat} = 4\pi/\lambda_{dip}$
- Bragg condition: 2 $n(\delta) k_0 \cos(\theta) = K_{\text{lat}}$
 - $\rightarrow \lambda_{dip} \cos(\theta) = \lambda_0 / n(\delta)$

- $\delta \text{: probe}-\text{atom detuning}$
- *n*: average refractive index
- We keep constant θ and tune λ_{dip} around $\lambda_{dip0} = \lambda_0 / \cos(\theta)$ ("geometric Bragg condition")
 - $\rightarrow \lambda_{dip0}$ = 780.7 nm with θ = 2°.
- Let's define $\Delta \lambda_{dip} = \lambda_{dip} \lambda_{dip0}$

$$n(\delta) - 1 = -rac{\Delta \lambda_{ ext{dip}}}{\lambda_{ ext{dip}}}$$

 $n-1 \propto \rho \operatorname{Re}(\alpha)$

 $\lambda_{
m dip}/2$

Maximum obtained reflectivity: 80 %

A. Schilke et al., Phys. Rev. Lett. 106, 223903 (2011)

1D model based on transfer matrices, $\Delta \lambda_{dip} = 0.24$ nm.

Experiments done at Tübingen (Germany) between 2010 and 2012

1) Photonic band gaps with two-level atoms

2) Photonic band gaps with EIT

3) Temporal dynamical effects

On-going experiments at Nice

Q: Can the PBG be improved by using EIT?

EIT: $Im(\alpha)$ vanishes \rightarrow transparency window

But: where $Im(\alpha) = 0$, $Re(\alpha) = 0 \rightarrow n = 1$

And also: same $Im(\alpha)$ @ Bragg

A: Unfortunately not 😕

A new, electromagnetically-induced photonic band gap

See also: Petrosyan, Phys. Rev. A 76, 053823 (2007)

PBG with EIT: experiment

- New laser phase-locked to the probe beam
- Different addressed transitions

PBG with EIT: experiment

+ characterization as a function of the coupling-beam parameters...

Possible application: all-optical switching

Probe @ δ = 3 Γ

Coupling beam switched between Δ = 3 and Δ = 3.2 Γ

 \rightarrow Transmission / Reflection

 \rightarrow two-port all-optical switch

A. Schilke et al., Phys. Rev. A 86, 023809 (2012)

Experiments done at Tübingen (Germany) between 2010 and 2012 1) Photonic band gaps with two-level atoms

2) Photonic band gaps with EIT

3) Temporal dynamical effects

On-going experiments at Nice

Optical transients in the reflection

• We switch on and off the incident probe beam with a duration $\tau_{laser} \approx 1$ ns << τ_{at} = 26 ns

A flash in the reflection?

The "flash" effect in transmission in a disordered medium:

Extensively studied by the group of D. Wilkowski (Singapore)

Chalony *et al.*, PRA 84, 011401(R) (2011) Kwong *et al.*, PRL 113, 223601 (2014) Kwong *et al.*, PRL 115, 223601 (2015)

In the Bragg reflection, there is only a scattered field, no incident field. But still a flash !?

To simulate the flash effect: go to Fourier space

For the Bragg reflected field: the same with the transfer matrix formalism to compute $E_{\rm t}$ and $E_{\rm r}$

 \rightarrow Transmitted and reflected intensities as a function of time

Flash in the reflection: simulation and interpretation

Spectra

Temporal dynamics at the switch-off

- → Flash effect observed on the near-resonance side of the reflection spectrum.
- ightarrow Qualitatively like the experiment \odot
- \rightarrow Interpretation: temporal or spectral picture

Superradiant decay of the reflection

Superradiant decay, in the linear optics regime, has been observed in a:

- In the scattered light (off-axis, disordered medium): our group
- The forward lobe (Timed-Dicke state, constructive interference in the forward direction): Havey
- In the coherent flash (in transmission): Wilkowski
- In Raman quantum memories: Felinto, LeBlanc,...
- In microscopic ensembles (dense clouds, 1D chain, nanofibers, etc...): Kimble, Rolston, Browaeys, Rauchenbeutel, etc...

Araújo et al., PRL 117, 073002 (2016)

Roof et al., PRL 117, 073003 (2016)

Kwong et al., PRL 115, 223601 (2015)

Here, scattering by a macroscopic ensemble in a specific (Bragg) direction with constructive interference.

Same simulations as previously:

- → Clearly superradiant
- ightarrow Decay rate increases with the detuning
- ightarrow Qualitatively like the experiment \odot

Preliminary data

Preliminary simulations

Summary

- Steady-state properties:
 - Bragg reflection > 80% possible ③
 - Discussion on the intrinsic limitations (scattering losses)

Schilke et al., Phys. Rev. Lett. 106, 223903 (2011)

- <u>Bragg + EIT:</u> A new band gap
 - Not better (at best, same amount of losses) 🟵
 - Narrower and externally controllable \odot \rightarrow two-port all-optical switch

Schilke *et al.*, Phys. Rev. A **86**, 023809 (2012)

- <u>Bragg + temporal dynamics:</u>
 - A nonintuitive flash effect
 - Superradiant decay

Asselie et al., in preparation

Future

Rich system:

- Spontaneous emission of excited atoms inside the lattice?
 - Pulse propagation, slow light?
 - EIT-quantum memory with two output ports?
 - Nonlinear effects: quantum correlations?
 - A controllable, nonlinear, lossless beam splitter?
 - Applications?

Strong analogies with 1D chains of atoms ------ Bragg reflection with a 1D chain near a nanofiber

Corzo *et al.*, PRL **117**, 133603 (2016) Olmos *et al.*, PRA **104**, 043517 (2021)

Acknowledgements

The Tübingen team:

- Alexander Schilke, PhD student
- WG, post-doc, PI of this project
- Claus Zimmermann, Prof.

Collaboration with:

- Philippe Courteille, Prof. at São Carlos, Brazil (formerly at Tübingen)

€€€: The Alexander von Humboldt Foundation

Alexander von Humboldt Stiftung/Foundation

The Nice team:

- Stephan Asselie, PhD student
- Jean-Marcel Nazon, PhD student
- Romain Caldani, Post-doc
- WG, CNRS researcher, PI of this project

€€€: The French National Research Agency

(projects PACE-IN and 1DOrder)

Robin Kaiser's group at Nice

William Guerin