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Our study demonstrates successful error mitigation of
indistinguishability-related noise in a quantum pho-
tonic processor through the application of the zero-noise
extrapolation technique. By measuring observable val-
ues at different error levels, we were able to extrapolate
towards a noise-free regime. We examined the impact
of partial distinguishability of photons in a two-qubit
processor implementing the variational quantum eigen-
solver for a Schwinger Hamiltonian. Our findings high-
light the effectiveness of the extrapolation technique
in mitigating indistinguishability-related noise and im-
proving the accuracy of Hamiltonian eigenvalue estima-
tion.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Introduction. Noise and errors are still the major obstacles for
the development of scalable quantum computers. This problem,
at least in theory, is remedied by quantum error correction (QEC).
However, QEC requires additional overhead for the most valu-
able resources — the physical qubits and the circuit depth. The
other way around could be careful account of experimentally
observable noise processes. Recently multiple quantum error
mitigation (QEM) methods were proposed: zero-noise extrap-
olation (ZNE) [1, 2], quantum subspace expansion (QSE) [3, 4],
purification [5, 6], probabilistic error cancellation (PEC) [7], sym-
metry verification [8, 9], and continuous-time Markov-process
error mitigation [10].

Experimental demonstrations of the QEM principle include
implementation on superconducting processors [7, 11, 12] and
trapped ion systems [13, 14]. Implementations of QEM on quan-
tum photonic processors are of most relevance for this work. At
first the PEC and ZNE methods were put under test to mitigate
photon losses in a Gaussian boson sampler [15]. Later the PEC
technique was used as a unified error mitigation scheme for any
type of noise [16]. It was experimentally applied to a variational
quantum eigensolver (VQE) algorithm for a HeH+ ion, where
information was encoded in optical ququart states.

In this work, we apply the ZNE mitigation technique to
the VQE algorithm which finds the minimal eigenvalue of the
Schwinger Hamiltonian on a photonic quantum processor. A key

source of errors in photonic architectures is the non-ideal indis-
tinguishability of photons, which affects the Hong-Ou-Mandel
(HOM) interference and detrimentally reduces the fidelity of
linear-optical two-qubit gates. We demonstrate the power of
the ZNE technique by extrapolating data gathered from a pho-
tonic processor with controllable indistinguishability towards
the noise-free regime.
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Fig. 1. The idea of zero-noise extrapolation method. (a) Cyan
curve describes the possible dependence of the expectation
value E(ε) on the noise level ε. Red line — linear extrapola-
tion from two points with different noise levels. (b) Sketch of
possible probability density function (PDF) of measured ex-
pectation value with noise (noisy, cyan), without noise (ideal,
lilac), and ZNE estimator Eest (error mitigated, red).

Zero-noise extrapolation. Suppose a quantum system is char-
acterized by a controllable parameter ε ≥ 0 that determines the
noise or decoherence strength (e. g., photon distinguishability).
We call ε the noise level. Let ε = 0 correspond to an ideal case
where all undesirable noise is absent. A common task for ZNE
is noise suppression when measuring, e. g., expectation value
E = ⟨H⟩ = Tr Hρ of some observable H. The state ρ(ε) pro-
duced by an experimental setup depends on ε hence the expec-
tation E(ε). The aim of ZNE is to find an estimation Eest ≈ E(0)
given only a measured data set for 0 < ε1 < · · · < εn:

Eest = F
(
E(ε1), . . . , E(εn); ε1, . . . , εn

)
, (1)

The lowest possible value ε1 corresponds to intrinsic unavoid-
able noise in the experimental setup. The approximating func-
tion F gives the rule of extrapolation.

In our experiments the noise level ε is related to HOM inter-
ference visibility in the optical chip. In this case, as shown in
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Fig. 2. (a) Experimental setup. Photon pairs generated in the nonlinear PPKTP crystal are coupled to the input of a programmable
glass chip through optical fibers. The fibers at the output of the optical chip are coupled to single-photon superconducting detectors.
The detection events are then processed by a time-tagger module and a classical computer. (b) Detailed scheme of the integrated
interferometer used in the quantum processor. The interferometer is formed by directional couplers (grey and cyan ones have the
splitting ratio of 50:50 and 33:67, respectively) and programmable thermo-optic phase-shifters (red ovals).

Supplemental Material, the dependence E(ε) for ε ≪ 1 is well
approximated by a linear function:

E(ε) = c1 + c2ε, (2)

where c1 and c2 are unknown coefficients. For linear depen-
dence, measurements at two points ε1,2 are sufficient to estimate
c1,2. Therefore, the general ZNE form Eq. (1) reduces to

Eest =
ε2E(ε1)− ε1E(ε2)

ε2 − ε1
. (3)

While the estimation Eest is closer to E(0) than E(ε1) (for a
proper selected extrapolation function), this improvement usu-
ally comes at a price of the increased estimator variance var[Eest]
(see Fig. 1). For example, if the statistical uncertainty is the same
for each E(ε1,2) regardless of noise, var[E(ε1)] = var[E(ε2)] =
σ2, the variance is

var[Eest] = σ2 ε2
2 + ε2

1
(ε2 − ε1)2 . (4)

Note that var[Eest] may be arbitrarily large as ε2 approaches
ε1: ε2 → ε1. However, a special choice of measured levels
{ε1, . . . , εn} allows to build advanced extrapolation with re-
duced estimator variance [2].

Variational eigensolver. We verify the efficiency of ZNE
in the VQE experiment. The VQE algorithm aims to find the
ground energy E0 of a given Hamiltonian H [17]. A quantum
processor prepares a probe state |ψ(φ)⟩ by means of an ansatz
circuit that depends on some adjustable parameters φ. This state
is measured, and the expectation value ⟨H⟩ = ⟨ψ(φ)|H|ψ(φ)⟩
is calculated using the measurement results. This value ⟨H⟩ is
limited by the the ground energy E0:

⟨ψ(φ)|H|ψ(φ)⟩ ≥ E0. (5)

For sufficiently expressible ansatz, the minimum of ⟨H⟩ over φ
is equal to E0. Thus, in what follows, we will use terms “ground
energy” and “eigenvalue” interchangeably.

The search over the parameter space {φ} is the task of a clas-
sical optimization algorithm. We have selected the simultaneous
perturbation stochastic approximation (SPSA) method [18], since
it is tolerant to random perturbations in target-function values.
During the VQE optimization run, the mitigated quantity is
the measured expectation value ⟨H⟩ that is forwarded to the

optimizer. As the result of the VQE algorithm we obtain the
estimation Eest of the Hamiltonian minimal eigenvalue.

In the present work we study error mitigation and not a
specific Hamiltonian, so we choose the Schwinger model Hamil-
tonian [19] which we previously analyzed in the similar VQE
setup [20]. We believe that this Hamiltonian is quite general,
and conclusions about ZNE remain valid for other choices. For
two qubits the Schwinger Hamiltonian has the following form:

H(m) = I + σx
1 σx

2 + σ
y
1 σ

y
2 − 1

2
σz

1 +
1
2

σz
1 σz

2 +
m
2
(σz

2 − σz
1 ), (6)

where I is the identity matrix, σi (i = 1, 2) are the Pauli matrices
acting on the qubit i, and m ∈ R is the Hamiltonian parameter.

Experimental setup. We utilize a source of photon pairs
based on spontaneous parametric down-conversion (SPDC) and
introduce controllable distinguishability by changing the polar-
ization of one photon in a pair relative to the other.

Our two-qubit photonic processor consists of integrated op-
tical interferometer manufactured in fused silica chip by fem-
tosecond laser writing [21]. The photons from SPDC source
are injected to the chip through polarization-maintaining single-
mode optical fibers and outcoupled using regular single-mode
fibers connected to superconducting single-photon detectors
(see Fig. 2a). Photons at the 810 nm wavelength are generated
by a nonlinear 30-mm PPKTP crystal that is pumped by a 405-
nm CW laser diode in the Sagnac configuration. The photon
pairs generation rate is 150 kHz. The SPDC source may generate
polarization-entangled photons when pumping the crystal from
both sides, but it is not necessary in the present experiment. So
the source was adjusted to produce the factorized state |HH⟩,
when both photons from a pair have horizontal polarization.

The elementary blocks of the programmable photonic chip
are phase-shifters (PS) and directional couplers (DC), which
implement reconfigurable single-qubit gates and a two-qubit
CNOT gate (see Fig. 2b). The first part of the interferometer
(phase-shifters 1–4) prepares the probe state, and the right part
(phase-shifters 5–8) sets the measurement basis. The central area
of the chip consists of passive DCs, which implement the prob-
abilistic linear optical CNOT gate with 1/9 success probability
[22].

By definition we set the noise level ε := 1 − V, where V is the
HOM visibility inside the chip. We can measure V by setting the
phase φ4 to π and examining the coincidence counts between
outputs 3 and 5. The interference happens at the central direc-
tional coupler DC7. Since DC7 is not ideal, the experimentally
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Fig. 3. (a) Dependence of ground energy E found by VQE for
the Schwinger Hamiltonian H(m) on different m and variable
noise level ε1. Dashed line — exact theoretical ground energy
E0; four cyan lines (bottom-up) — numerical simulations for
ε1 = 0.1, 0.3, 0.5, 0.7; cyan and red dots — experiment without
and with mitigation, respectively. (b) Experimental depen-
dence of the Hamiltonian expectation value ⟨H(−10)⟩ on the
number of SPSA-optimizer iterations during a single VQE run.
Cyan curves — measured expectations E(ε1) and E(ε2) for
noise levels ε1,2; red-curve — corresponding error-mitigated
result Eest; black horizontal line — exact ground energy E0;
filling — one standard deviation of the appropriate quantity
under assumption that photon-counting statistics is Poisso-
nian.

measured HOM dip visibility in the chip drops to 82% compared
with 98% in the fiber splitter.

We alter the noise level ε by rotating the polarization of one
photon from a pair thus changing indistinguishability of photons
and HOM visibility. A half-wave plate (HWP) installed in one
arm of the SPDC source transforms the polarization state |H⟩ to
cos(2θ) |H⟩+ sin(2θ) |V⟩, where θ is the HWP axis angle relative
to the horizontal.

The intrinsic noise ε1 = 0.18 corresponds to the case when
the experimental setup is adjusted to give the highest possible
visibility V1 = 82%. The second value ε2 = 0.29 is obtained from
visibility measurement, V2 = 71%, when HWP is rotated by 10◦

from its optimal position.
ZNE on a photonic processor. We run VQE algorithm for

each value of the Hamiltonian parameter m, first, without miti-
gation with intrinsic noise level ε1 and, second, with error miti-
gation at noise levels ε1,2.

Numerical simulations and experimental results show that
the expectation ⟨H(m)⟩ is mainly sensitive to noise in the region
of negative m, as shown in Fig. 3.

ZNE mitigation can significantly improve the quality of
ground-energy estimation by VQE. It is possible to obtain values
closer to the precise eigenvalues E0 and below the limit set by
the intrinsic distinguishability of the photon source. For exam-
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Fig. 4. Dependence of ground energy E found by VQE for the
Schwinger Hamiltonian H(−10) on the intrinsic noise level
ε1. Cyan curve — simulation without mitigation; red curve —
simulation with mitigation, where the second noise level is
ε2 = tε1 and the ratio t ≈ 1.61 as in the experiment; filling —
one standard deviation of mean over 100 optimizer runs start-
ing from random initial guesses; gray points — experimental
results.

ple, without mitigation with intrinsic noise, the VQE algorithm
converges to E = −7.9± 0.1 for m = −10, while with mitigation
we obtain E = −8.9 ± 0.6 (the precise value is E0 = −9.2).

In numerical simulations, we examined how error mitigation
works for different noise levels ε in more detail to assess the
method’s applicability to larger distinguishability. Each point
in Fig. 4 is the ground-energy estimation found by the SPSA
optimizer after 200 iterations averaged over 100 runs starting
from random phases {φ1, . . . , φ4}. For a relatively poor indistin-
guishability V = 60% (ε = 0.4), ZNE allows us to achieve better
results than our processor without error mitigation.

Deferred mitigation. A typical problem in optical ex-
periments is the unstable system efficiency during long-term
measurements due to temperature and mechanical drifts. To
speedup VQE we propose to turn on the mitigation not from the
very beginning but only after a certain iteration of the optimizer,
so the first k0 iterations are not mitigated and subsequent k1 ones
are mitigated. We refer to this strategy as a deferred mitigation. We
show below that for fixed VQE-experiment time deferred miti-
gation (k0 > 0) achieves higher accuracy than ordinary strategy
(k0 = 0). Equivalently, for given accuracy, deferred mitigation is
faster.

Experiment time is proportional to the total number of mea-
sured bases N needed for estimation of expectation values ⟨H⟩
during VQE optimization. Suppose that without mitigation each
optimizer iteration requires n basis measurements (n = 6 for
the Schwinger Hamiltonian and the SPSA optimizer, see Supple-
mental Material). When the mitigation is applied this quantity
doubles to 2n bases per iteration because two noise levels ε1,2
must be accounted. Therefore, at iteration K = k0 + k1 of the
optimizer, the number of performed measurements is

N = nk0 + 2nk1 = n(K + k1), (7)

where 0 ≤ k0,1 ≤ K is by definition. If N is fixed, there is a
trade-off between optimizer convergence (parameter K) and
noise mitigation (parameter k1).

We quantify VQE error ∆E = |E − E0| by the absolute differ-
ence between ground-energy estimation E found by VQE and
the exact theoretical value E0. Two factors affect this error: first,
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Fig. 5. Simulation of deferred mitigation. Mitigation is turned
on after an iteration k0 indicated by the y-axis, while the num-
ber of measured bases N is shown by the x-axis. The color
scale indicates relative error R(N, k0) of VQE (see text for defi-
nition).

deviation of ansatz parameters {φj} from their optimal values
and, second, nonzero noise ε. At the beginning of VQE optimiza-
tion, usually the first factor prevails, and the mitigation has little
impact on accuracy since it aims to suppress the second one.
Therefore, ZNE may be turned off not to waste measurement
budget N. As the optimizer refines parameters {φj}, the noise
factor becomes stronger, and the mitigation comes into play.

We conducted numerical simulations of the experiment
for different values k0. For each k0 we performed 100 VQE
runs, tracked the number N, and calculated error ∆E(N, k0) =
|Ē(N, k0) − E0|, where Ē(N, k0) is the averaged-over-runs
ground energy found by the optimizer utilizing N measure-
ments. In our implementation of deferred mitigation, SPSA
optimizer is restarted from scratch when mitigation is switched
on, using the latest probe state found in unmitigated stage as
the initial guess.

The obtained dependence of relative error R(N, k0) :=
∆E(N, k0)/∆E(N, 0) is depicted in Fig. 5. By definition
R(N, 0) = 1, and values R(N, k0) < 1 mean that deferred miti-
gation achieves better accuracy (error is smaller) compared to
ordinary mitigation with k0 = 0, given the same number of
measurements N. As one can see, for fixed N and k0 > 0, the
error R(N, k0) is always below unity and decreases towards
larger k0, e. g., R(120, 18) ≈ 0.194. Therefore, for this setting de-
ferred mitigation is always preferable and the highest accuracy
is achieved when only the last optimizer iteration is mitigated:
k1 = 1, k0 = N/n − 2.

Conclusion. We have experimentally demonstrated ZNE
method to mitigate partial distinguishability of photons in linear-
optical quantum processors. We have studied the performance
of the method in a two-qubit VQE algorithm and have found
that error mitigation allows to estimate the ground energy to
better accuracy than allowed by intrinsic photon source distin-
guishability. For higher dimensional systems the dependence of
a mitigated quantity on the noise level may become nonlinear.
Nevertheless, functional form of this dependence (e. g. degree
of an approximating polynomial) can still be calculated ana-
lytically or measured experimentally. ZNE, along with other
QEM methods, has several limitations [23], including a longer
experiment time and an increase in estimator variance; both of
these parameters can be assessed beforehand to choose a more
effective QEM strategy. We will address ZNE implementation in

larger scale experiments in future works.
Partial photon distinguishability is ubiquitous for photon

sources of different physical nature, so we expect that ZNE
mitigation may be widely adopted in linear-optical quantum
computing to overcome corresponding errors regardless of the
specific realization of two-qubit gates and quantum algorithms.
The method only requires a possibility to change the degree
of distinguishability in the experiment. The specific approach
using polarization control demonstrated here will be applicable
for any architecture with dual-rail encoding of photonic qubits
in waveguides or spatial modes.
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