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Background

• Quantum computing is performed by manipulations of the state
of real quantum hardware.

• However, the existing devices are quite noisy and support
limited number of operations.

• In these restrictions, a new variational model of quantum
computing was proposed.
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Theoretical background



Language of quantum computing

1. Single qubit basis: |0⟩ , |1⟩.
2. n-qubit basis: {|0⟩ , |1⟩}⊗n.
3. For a bit string j = j1 . . . jn, |j⟩ ≡ |j1⟩ ⊗ · · · ⊗ |jn⟩ ≡ |j1 . . . jn⟩.
4. Pauli matrices

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1)

also sometimes referred to as σx,y,z or σ1,2,3

5. Pauli strings Pα = σα1 ⊗ · · · ⊗ σαn ≡ σα1
1 . . . σαn

n .

For example, X2 ≡ 1⊗ X⊗ 1⊗ · · · ⊗ 1.
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Language of quantum computing

6. Quantum states evolve under unitary operations U (i.e.
U† = U−1) as |ψ0⟩ → |ψ⟩ = U |ψ0⟩.

7. Quantum circuits realize unitary operations as a sequence of
single and two-qubit gates.

8. Any observable corresponds to a certain hermitian matrix
H = H† and can be decomposed into Pauli strings H =

∑
α
hαPα.

Expectation value of this observable can be computed by
measuring individual Pauli strings as

⟨ψ|H |ψ⟩ =
∑
α

hα ⟨ψ|Pα |ψ⟩ . (2)
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Variational Quantum Algorithms



Variational Quantum Algorithms (VQAs)

1. A list of real parameters θ parametrizes a quantum circuit U(θ).
2. The circuit prepares quantum state |ψ(θ)⟩ = U(θ) |ψ0⟩.
3. A so-called cost function is computed as a sum of expected values of
certain observables E(θ) =

∑
α

hα ⟨ψ(θ)| Pα |ψ(θ)⟩ .

4. Classical optimization routines update parameters θ → θ∗ in an
attempt to minimize the cost function.

5. As a result, a certain “desired” state is prepared |ψ(θ∗)⟩ = U(θ∗) |ψ0⟩.
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Example of variational ansatz

Two layers of checkerboard ansatz for n = 4 qubits

Rσ(θ) = e−iθσ

Rzz(θ) = e−iθZ⊗Z
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Variational Quantum Eigensolvers (VQEs)

VQEs are designed to find ground state |ψg⟩ and ground energy Eg of
some problem Hamiltonian H. This includes

1. Condensed matter problems: H =
∑

neighbours
ZiZj + h

∑
i Xi.

2. Quantum chemistry problems: H =
∑
i,j
hijc†i cj +

∑
ijlk
Kijlkc†i c

†
j clck.

3. Classical optimization problems: H =
∑
i,j
WijZiZj.

The cost function E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ represents the energy to be
minimized, following

min
θ

⟨ψ(θ)|H |ψ(θ)⟩ ≥ ⟨ψg|H |ψg⟩ = minH. (3)
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Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a type of VQE, designed to solve combinatorial optimization
problems. It uses an ansatz of the form

|ψp(γ,β)⟩ =
p∏
k=1

e−iβkHx · e−iγkH |+⟩⊗n , (4)

with two sets of parameters β,γ . Here Hx =
∑
i
Xi, and

|+⟩ = 1√
2
(|0⟩+ |1⟩). The task is to minimize the expectation value of

H, by finding
min
(γ,β)

⟨ψp(γ,β)|H |ψp(γ,β)⟩ (5)
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QAOA parameter structure,
concentrations and layerwise
training saturations



QAOA for state preparation1

We use QAOA for the state preparation problem, i.e. H = 1 − |t⟩⟨t|:

|ψp(γ,β)⟩ =
p∏
k=1

e−iβkHx · e−iγk|t⟩⟨t| |+⟩⊗n (6)

to prepare quantum state |t⟩ = |0⟩ ≡ |0⟩⊗n.

Theorem 1

Optimal parameters for depth p = 1 QAOA circuit relate as γ = π− 2β.

Theorem 2

Optimal parameters for depth p = 1 QAOA circuit converge as βn→ π

and γ → π when n→ ∞.
1Progress Towards Analytically Optimal Angles in Quantum Approximate Optimization

D. Rabinovich, R. Sengupta, E. Campos, V. Akshay, and J. Biamonte
Mathematics, 10(15), 2601 (2022)
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QAOA for state preparation

We numerically validate that parameters of the last QAOA layer
follow the same pattern, γp + 2βp = π as claimed in theorem 1 for up
to p = 5 layers and n = 17 qubits.
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Figure 1: Optimal angles of p = 5 depth circuit for n ∈ [6; 17].
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Parameter Concentrations 2

Definition 1 (Parameter Concentrations)

Given βn and γn, the two p-dimensional vectors of optimal
parameters at fixed depth p and n qubits. Then, parameters
concentrate whenever

∃ l > 0 : ∀ βn,γn ∃ βn+1,γn+1 :

|βn+1 − βn|2 + |γn+1 − γn|2 = O
(
1
nl

)
.

2Parameter Concentrations in Quantum Approximate Optimization
V. Akshay,D. Rabinovich, E. Campos, J. Biamonte
(Letter) Physical Review A 104, L010401 (2021)
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Layerwise QAOA

We again investigate the state preparation QAOA sequence,

|ψp(γ,β)⟩ =
p∏
k=1

e−iβkHx · e−iγk|0⟩⟨0| |+⟩⊗n , (7)

but now optimize its parameters layer by layer, following so called
layerwise training strategy.

Definition 2 (Training Saturation)
Training saturates for depth p∗, the smallest depth for which

| ⟨0|ψp∗+1⟩ |2 ≤ | ⟨0|ψp∗⟩ |2 ̸= 1, (8)
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Layerwise training saturations3
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Figure 2: Saturation occurs at p∗ = n as indicated by the highlighted points.

3Training Saturation in Layerwise Quantum Approximate Optimisation
E.Campos, D.Rabinovich, V.Akshay, J.Biamonte
(Letter) Physical Review A 104, L030401 (2021)
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Symmetric subspace

Definition 3 (Dicke vectors)
|ek⟩ =

1√
Ckn

∑
x1+···+xn=k

|x1x2 . . . xn⟩ , (9)

for k = 0, . . . ,n.

Any vector from the symmetric subspace can be decomposed over
Dicke vectors, |ψ⟩ =

n∑
k=0

Ak |ek⟩.
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Amplitudes of saturated states
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Figure 3: Amplitudes of layerwise optimized QAOA states.
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Training saturations

We introduce and prove the necessary saturation conditions:

Proposition 1 (Necessary saturation conditions)

QAOA states |ψ⟩ =
n∑
k=0

Ak |ek⟩ ∈ Hs, whose overlap with the target

string |0⟩ can not be increased, using layerwise optimization, satisfy

A1 ≡ ⟨e1|ψ⟩ = 0, (10)

|A2| ≡ | ⟨e2|ψ⟩ | ≤
√

n
2(n− 1) | ⟨e0|ψ⟩ |. (11)
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Training saturations

Yet, the performance can be improved in the presence of noise. For
example, we can miscalibrate parameters slightly after training every
layer:
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Figure 4: Overlap with respect to circuit depth. (Blue) simple layerwise
training, (red) layerwise training with random parameter perturbation from
[− 2π

100 ,
2π
100 ], (green) same but for [−

3π
100 ,

3π
100 ].
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Parameter perturbation noise4

4Robustness of variational quantum algorithms against stochastic parameter perturbation
D. Rabinovich, E. Campos, S. Adhikary, E. Pankovets, D. Vinichenko, J. Biamonte
Physical Review A 109, 042426 (2024)
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Parameter perturbation noise

If we use a parameterized circuit
q∏
k=1

U(θk) to prepare state

|ψ(θ)⟩ =
∏q

k=1 Uk(θk) |ψ0⟩, due to parameter fluctuation a different
state

|ψ(θ + δθ)⟩ =
q∏
k=1

U(θk + δθk) |ψ0⟩ . (12)

ends up being prepared. Importantly, here δθ can vary from
experiment to experiment.
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Parameter perturbation noise

We describe this form of noise as decoherence

|ψ(θ)⟩⟨ψ(θ)| → ρ(θ) =

∫
δθ∈[−π,π]×q

p(δθ) |ψ(θ + δθ)⟩⟨ψ(θ + δθ)|d(δθ),

(13)
with p(δθ) being the probability density of δθ. Any expectation value
should now be calculated as ⟨O⟩(θ) = Tr(Oρ(θ)).
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Sensitivity to noise

Theorem 3

Consider a quantum circuit |ψ(θ)⟩ = U1(θ1) . . .Uq(θq) |ψ0⟩, where each
Uk(θk) = eiAkθk ,A2k = 1. Assume that every parameter θk receives a
perturbation δθk, sampled from the probability distribution p(δθk).
Assume that (a) perturbations to all the angles are independent, (b)
the distribution is symmetric around zero, p(δθ) = p(−δθ) and (c) the
distribution p(δθk) vanishes quickly outside a small range (−σk, σk).
Assuming typical strength of the noise to be uniform σk = σ, under
the noise model (13) expectation value of any observable O changes
as

Tr(ρ(θ)O)− ⟨ψ(θ)|O |ψ(θ)⟩ ∝ σ2 (14)

in the lowest order in σ.
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Sensitivity to noise

For the proof we demonstrate that ρ(θ) = |ψ(θ)⟩⟨ψ(θ)|+ δρ, where

δρ ≈ −
q∑
k=1

ak |ψ(θ)⟩⟨ψ(θ)|+
q∑
k=1

ak |ψk⟩⟨ψk|+ O(σ4k). (15)

Here
ak ≡ ⟨sin2 δθk⟩ ≈ ⟨δθ2k⟩ =

∫
(δθk)

2p(δθk)d(δθk) ∼ σ2k, (16)

and
|ψk⟩ = U1(θ1) . . .Uk

(
θk +

π

2

)
. . .Uq(θq) |ψ0⟩ . (17)
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Robustness of VQE

Following examples of VQE, we demonstrate that due to parameter
perturbation the energy changes at most as δE ≤ qσ2(Em − E), where
Em is the highest eigenvalue of H.
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qσ2 ≲ 1.

D. Rabinovich 23



Hardware inspired Zero Noise Extrapolation5

5Mitigating quantum gate errors for variational eigensolvers using hardware-inspired zero-noise extrapolation
A. Uvarov, D. Rabinovich, O. Lakhmanskaya, K. Lakhmanskiy, J. Biamonte, and S. Adhikary
Physical Review A 110, 012404 (2024)
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Zero Noise Extrapolation

1. In the presence of noise, expectation values of any observable
⟨O⟩(λ) become dependent on the strength of the noise λ.

2. Given some control over λ, one can gather statistics for different
noise strength.

3. Performing extrapolation lim
λ→0

⟨O⟩(λ), one recovers an
approximation to the noiseless expectation value.
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Utilizing inhomogeneous error distribution

Due to inhomogeneity of the errors in current devices, different
abstract-to-physical qubit mappings naturally give rise to different
strength of the noise.

(a) (b) (c)
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Hardware inspired Zero Noise Extrapolation

We assume that every gate is followed by a noisy channel

Φij[ρ] = (1− qπ(ij))ρ+ qπ(ij)E(ρ), (18)

whose strength qπ(ij) depends on the permutation π.
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Hardware inspired Zero Noise Extrapolation

In the presence of the noise the energy becomes

E = E0 +
∑

(j,k)∈T
l∈[1,d]

qπ(jk)(Eljk − E0) + O(q2)

= E0 + (A− E0)
∑

(j,k)∈T
l∈[1,d]

qπ(jk) +
∑

(j,k)∈T
l∈[1,d]

qπ(jk)ϵljk + O(q2). (19)

Here E0 = Tr ρ0H, while Eljk are the energies obtained by applying an
error channel E to qubits (j, k) in the l-th layer of the ansatz.
A = 1

|T|d
∑
Eljk, ϵljk = Eljk − A.
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Hardware inspired Zero Noise Extrapolation

Theorem 4

When all qubit permutations π ∈ Sn are considered6 and the
quantum circuit has a regular multigraph topology, Zero Noise
Extrapolation using the permutation fit allows to extrapolate to
perfect noiseless expectation value E0 up to the terms O(q2) .

6The required number of permutations can be reduced from n! to just 2n.
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Hardware inspired Zero Noise Extrapolation

Figure 5: Plots showing Zero Noise Extrapolation using our proposed method
for n = 6 qubits when all permutations are considered. Ising Hamiltonian
(left) and H2O Hamiltonian (right).
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Number of permutations

Figure 6: ZNE error versus the number of permutations used.
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Strength of the noise

Figure 7: ZNE estimated energy as a function of the magnitude of circuit
errors for n = 12 qubits.
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Hardware native QAOA ansatz7

7 Ion native variational ansatz for quantum approximate optimization
D. Rabinovich, S. Adhikary, E. Campos, V. Akshay, E. Anikin, R. Sengupta, O. Lakhmanskaya, K. Lakhmanskiy, J. Biamonte
Physical Review A 106, 032418 (2022)

D. Rabinovich 33



QAOA compilation step

Execution of QAOA circuit for some problem Hamiltonian H requires
execution of the propagator exp{−iγH}, which can be done in two
different ways:

1. Native implementation: by letting the system evolve under
Hamiltonian H for time γ, naturally inducing the transformation
exp{−iγH}.

2. Digital implementation: requires a compilation step to
decompose the operator exp{−iγH} into a sequence of quantum
gates.
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Ion native QAOA ansatz

We consider an example of an ion based quantum computer and an
ion-native QAOA ansatz

|ϕp(γ,β)⟩ =
p∏
k=1

(
exp(−iβkHx) exp

(
−iγkHZZI

))
|+⟩⊗n , (20)

where
HZZI =

Jmax
2
∑
j ̸=k

AjAk
|j− k|ZjZk, (21)

and Aj ∈ [−1, 1]. The interaction (21) is native to the ion based
quantum computers and can be executed naturally, without
decomposition into gates.
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Ansatz symmetries

The ansatz states are symmetric under bit flip, i.e.

X⊗n |ψ⟩ = |ψ⟩ . (22)

Additionally, if Aj = An−j+1, the ansatz possesses additional reflection
symmetry R, which acts as R|j1 . . . jn⟩ = |jn . . . j1⟩:

R|ψ⟩ = |ψ⟩ . (23)
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Ion native QAOA ansatz

We use the developed ansatz to solve instances of
Sherrington-Kirkpatrick (SK) Hamiltonian

HP =
1
2
∑
j ̸=k

KjkZjZk, (24)

Kjk ∈ [−1, 1], which can not be executed natively on the platform. We
minimize SK instances with respect to the developed ion native
QAOA ansatz (20),

⟨ϕp(γ,β)|HP |ϕp(γ,β)⟩ → min. (25)

D. Rabinovich 37



Solving SK instances of n = 6 qubits

Fraction of SK instances with n = 6 that could be minimized by the
proposed QAOA ansatz at each depth.
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Large system size
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Figure 8: Overlap of the state prepared by the ion native ansatz (20) with the
ground space, for different number of qubits and circuit depth.
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Conclusions



Conclusions

1. Optimal parameters of state preparation QAOA circuit satisfy
(approximately) linear relation.

2. Necessary conditions for the onset of layerwise training
saturation were established. Violation of these conditions can
remove saturation.

3. In the presence of parameter perturbation noise, expectation
values of any observable receive perturbations quadratic in the
typical scale of parameter perturbation.

4. A novel Zero Noise Extrapolation strategy, utilizing the
inhomogeneity of errors in existing devices, was proposed and
tested.

5. A hardware-specific modification of QAOA ansatz was developed
and tested.
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Energy vs ground state overlap

Certain amount of overlap with the ground state can be sufficient to
guarantee success. Having prepared a state of overlap g with the
ground state, the probability to measure the ground state at least
once in k measurements is given by

pk = 1− (1− g)k. (26)

For g = 0.01, p100 = 0.63, p500 = 0.99.
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Hardware efficient ansatz

Single layer of the hardware efficient ansatz for n = 4 qubits (left)
and an example of entangling operator (right)
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•

Example of depth p = 2 checkerboard ansatz of n = 4 qubits.
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Role of the problem Hamiltonian in VQE

In VQE we do not need to simulate the evolution under problem
Hamiltonian H, we only need to measure it. For that we

1. Decompose H into a sum of Pauli strings Pα, H =
∑
hαPα.

2. Store the set {hα,Pα}α on a classical computer.
3. Measure expectation values of Pauli strings Pα on a quantum
computer in the state, prepared by the ansatz.

4. Pass the measured values to the classical computer, which
computes the energy cost function as

⟨ψ(θ)|H |ψ(θ)⟩ =
∑
α

hα ⟨ψ(θ)|Pα |ψ(θ)⟩ . (27)

D. Rabinovich 45



Statement defended

For the QAOA circuit with an n qubit problem Hamiltonian
H = 1 − |t⟩⟨t| we

1. Prove a linear relation γ + 2β = π between optimal parameters
for p = 1 depth circuit of an arbitrary problem size.

2. Numerically validate the linear relation γ + 2β = π between
optimal parameters of the last QAOA layer for system sizes up to
n = 17 qubits and circuit depth p = 5.
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Statement defended

For QAOA circuit with an n qubit problem Hamiltonian H = 1 − |t⟩⟨t|
trained with the layerwise training strategy we

1. Prove the existence of nontrainable quantum states, whose
overlap with the target bitstring |t⟩ can not be improved.

2. Formulate and prove necessary conditions for the onset of
layerwise training saturation.
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Statement defended

Under the weak parameter perturbation assumption, when every
parameter of a quantum circuit receives a stochastic perturbation of
typical scale σ we prove that the expectation value of any observable
is perturbed by a term, proportional to σ2.
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Statement defended

Under the assumption of inhomogeneously distributed errors across
the gates between different pairs of qubits a method of Zero Noise
Extrapolation is proposed. In this method, the effective strength of
the noise is varied by considering different abstract to physical qubit
mappings.

1. The method is proven to recover exact noiseless value up to
terms, quadratic in the strength of the noise, for circuits of
regular graph topology when all qubit permutations are
considered.

2. Numerical simulations of the proposed method using only up to
100 permutation allows recovering VQE noiseless energy for
transverse field Ising model and water molecule with accuracy
of 10−2 and better for up to 12 qubits.
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Statement defended

QAOA ansatz can be modified to take native system interactions into
account, which bypasses the gate based model. For the example of
ion based quantum computer, this allowed to modify QAOA to solve
arbitrary instances of Sherrington-Kirkpatrick Hamiltonian of n = 6
qubits with at most 0.75 energy error using no more than 6 layers of
the developed ansatz.
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