Рабочая программа дисциплины

1. Название дисциплины: Магнитооптика тонких плёнок и наноструктур

2. Уровень высшего образования – магистратура

3. Направление подготовки: 03.04.02 Физика (магистратура)

4. Аннотация:

Дисциплина обеспечивает теоретическую подготовку студентов в области физики взаимодействия электромагнитного излучения с магнитными веществами и наноструктурами. В курсе рассматривается теоретическое описание линейных и нелинейных магнитооптических эффектов Фарадея, Керра, Фохта, магнитного линейного и кругового дихроизма в оптическом диапазоне. Дается описание особенностей магнитооптических эффектов в объемных веществах, тонких магнитных пленках, периодических средах: магнитофотонных кристаллах и брегговских волноводах, в магнитоплазмонных и Ми-резонансных наноструктурах, применения магнитооптических эффектов и экспериментальных методов детектирования. Рассматриваются магнитооптические эффекты на субпикосекундных масштабах времени, обратный эффект Фарадея и эффект сверхбыстрой демагнетизации.

5. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся (указывается согласно рабочему плану):

Объем дисциплины составляет 2 зачетные единицы, всего 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (24 часов занятия лекционного типа, 10 часов занятия семинарского типа, 2 часа коллоквиумов), 36 часов составляет самостоятельная работа обучающегося.

6. Формируемые компетенции и входные требования для освоения дисциплины, предварительные условия:

НАЗВАНИЕ КОМПЕТЕНЦИЙ:

СПК-1 Способность свободно владеть профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых и оптических технологий.

СПК-2 Способность к поиску, критическому анализу, обобщению и систематизации научной информации в области физики квантовых и оптических технологий.

СПК-3 Способность организовывать и планировать исследования, ставить конкретные задачи научных исследований в области физики

квантовых и оптических технологий, и решать их с помощью современной аппаратуры и оборудования.

ПОРОГОВЫЙ (ВХОДНОЙ) УРОВНЬ ЗНАНИЙ, УМЕНИЙ, ОПЫТА ДЕЯТЕЛЬНОСТИ, ТРЕБУЕМЫЙ ДЛЯ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Для того чтобы формирование данных компетенций было возможно, обучающийся, приступивший к освоению образовательной программы, должен:

- ЗНАТЬ: основные методы научно-исследовательской деятельности.
- УМЕТЬ: выделять и систематизировать основные идеи в научных текстах; критически оценивать любую поступающую информацию, вне зависимости от источника; избегать автоматического применения стандартных формул и приемов при решении задач.
- ВЛАДЕТЬ: навыками сбора, обработки, анализа и систематизации информации по теме исследования; навыками выбора методов и средств решения задач исследования.

Для освоения дисциплины необходимы знания и умения, приобретаемые в рамках дисциплин общей физики «Оптика», «Электромагнетизм» и теоретической физики «Электродинамика», а также дисциплины «Дифференциальные уравнения». Желательно предварительное освоение материала вариативной части программы бакалавриата: дисциплин профиля «Теория волн».

7. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Наименование и краткое содержание разделов и						В том числе		
тем дисциплины, форма промежуточной аттестации по дисци- плине	, часы	, часы Контактная работа (работа во взаимодействии с преподавателем), часы из них			c	Самостоятельная работа обучающегося, часы из них		
		Занятия лекционного типа	Занятия семинарского типа	Учебные занятия, направленные на проведение текущего контроля успеваемости коллоквиумы, практические контрольные занятия и др.*	Bcer o	Выполнение домашних заданий	Подготовка рефератов и т.п.	Все го
1. Введение §1. Исторический обзор открытия магнитооптических эффектов.		2			2	1 час Знакомство с обзорами по магнитооптическим эффектам [1, 2].	0	1

		1	I .			1
2. Феноменологическое описание	6	2		8	6 часов	6
магнитооптических эффектов					Преломление,	
§2. Уравнения Максвелла. Материальные					отражение света на	
уравнения. Гиротропные среды. Электрическая и					границе с магнитной	
магнитная гиротропия. Магнитооптический					средой [2]. Вывод	
параметр. Поляризация света. Матрицы Джонса.					формул	
Уравнения и формулы Френеля.					экваториального	
					магнитооптического	
§3 Магнитооптические эффекты в проходящем					эффекта Керра в	
свете.					отраженном и	
Эффект Фарадея. Формула угла поворота плоскости					проходящем свете [1].	
поляризации. Понятие невзаимности. Эффект					Экваториальный	
Фохта. Магнитный линейный дихроизм.					магнитооптический	
Магнитный круговой дихроизм.					эффект Керра на второй	
					гармонике. [1,4]	
§4. Магнитооптические эффекты в отраженным						
свете.						
Полярный, меридиональный и экваториальный						
магнитооптические эффекты Керра. Уравнения для						
поворота плоскости поляризации и эллиптичности						
света. Экваториальный эффект Керра в проходящем						
свете.						
85 TT V						
§5. Нелинейные магнитооптические эффекты.						
Нелинейный магнитооптический эффект Керра на						
второй оптической частоте.						

4. Сверхбыстрая магнитооптика. §13. Сверхбыстрые магнитооптические эффекты. Обратный эффект Фарадея. Понятие о сверхбыстрой демагнетизации ферромагнетиков. Трех-температурная модель. Спиновые волны. Магнитная динамика. §14. Сверхбыстрые магнитооптические эффекты индуцированные поверхностными плазмонами и эффекты медленного света. Взаимодействие с фононными колебаниями.	4	2	6	2 часа Вывод величины обратного эффекта Фарадея [14].	2
5. Магнитооптические устройства и способы экспериментальной реализации магнитооптических эффектов §15. Экспериментальные методы измерения магнитооптических эффектов Керра и Фарадея. Синхронное детектирование. Фотоупругий модулятор света. §16. Методики измерения магнитооптических эффектов на пико и субпикосекундных масштабах времени. Методик накачки-зондирования. Кросскорреляционные схемы.	2	0	2	4 часа Принцип работы фотоупругого модулятора света [15].	2
5. Прикладные аспекты магнитооптики §16. Применения магнитооптических эффектов. Магнитооптическая запись. Интегральная магнитооптика. Магнитооптические модуляторы, переключатели, изоляторы, дефлекторы. Лазерные гироскопы с магнитооптическими материалами. Магнитоплазмонные интерферометры.	2	0	2	4 часа Принцип работы магнитооптического волновода и мультиплексора [4].	4

Промежуточная аттестация - зачет		4		4	16 часов Подготовка к промежуточной аттестации (зачету).	16
Итого	24	10	2	36		36

^{*} Текущий контроль успеваемости в рамках занятий семинарского типа реализуется в форме обсуждения.

8. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине:

- 8.1 Основная и дополнительная литература доступная студентам через Интернет или по запросу лектору.
- 8.2 Электронные презентации основных тем дисциплины доступные через сайт кафедры: https://www.nanolab.phys.msu.ru

9. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Типовые контрольные вопросы и темы для обсуждения:

- 1. Формула угла поворота плоскости поляризации при эффекте Фарадея.
- 2. Формулы и уравнения Френеля.
- 3. Тензор диэлектрической проницаемости при поперечном, продольном и полярном намагничивании.
- 4. Магнитооптический параметр.
- 5. Формула экваториального магнитооптического эффекта Керра.
- 6. Ферромагнетики. Феррит-гранаты.
- 7. Фарадеевский изолятор.

Типовые вопросы к зачету:

- 1. Материальные уравнения. Тензор диэлектрической и магнитной проницаемости в магнитном поле.
- 2. Формулы Френеля. Уравнения Френеля.
- 3. Парамагнетики, диамагнетики, ферромагнетики. Примеры магнитных диэлектриков и полупроводников.
- 4. Поляризация света. Эллиптичность.
- 5. Магнитооптические эффекты Керра в отраженном свете.

- 6. Магнитооптические эффекты в проходящем свете. Эффекты Фохта и Фарадея.
- 7. Формула для экваториального магниооптического эффекта Керра на границе магнитный материал.
- 8. Формулы полярного и меридионального эффектов Керра.
- 9. Формула для фарадеевского вращения.
- 10. Типичная кривая азимутальной и угловой зависимости эффектов Керра для ферромагнитных металлов.
- 11. Магнитофотонные кристаллы. Микрорезонаторы. Эффект Фарадея в магитофотонных кристаллах и микрорезонаторах.
- 12. Поверхностные плазмон-поляритоны. Локальные плазмоны. Одномерные и двумерные магнитоплазмонные кристаллы. Механизм усиление магнитооптических эффектов в плазмонных маетриалах.
- 13. Магнитооптические волноводы. Примеры магнитооптических волноводов. Брегговские магнитооптические волноводы.
- 14. Ми-резонансы. Усиление магнитооптических эффектов с помощью Ми-резонансных структур. Гибридные наноструктуры с волноводными модами.
- 15. Сверхбыстрые магнитооптические эффекты. Обратный эффект Фарадея. Понятие о сверхбыстрой демагнетизации ферромагнетиков. Трех-температурная модель. Спиновые волны. Магнитная динамика.
- 16. Сверхбыстрые магнитооптические эффекты индуцированные поверхностными плазмонами и эффекты медленного света. Взаимодействие с фононными колебаниями.
- 17. Экспериментальные методы измерения магнитооптических эффектов Керра и Фарадея. Синхронное детектирование. Фотоупругий модулятор света.
- 18. Методики измерения магнитооптических эффектов на пико и субпикосекундных масштабах времени. Методик накачки-зондирования. Кросс-корреляционные схемы.
- 19. Применения магнитооптических эффектов. Магнитооптическая запись. Интегральная магнитооптика. Магнитооптические модуляторы, переключатели, изоляторы, дефлекторы. Лазерные гироскопы с магнитооптическими материалами. Магнитоплазмонные интерферометры.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ПОКАЗАТЕЛИ ДОСТИЖЕНИЯ ЗАДАННОГО УРОВНЯ ОСВОЕНИЯ КОМПЕТЕНЦИЙ)

ВЛАДЕТЬ: профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых и оптических технологий (В1, СПК-1).

ВЛАДЕТЬ: навыками поиска, критического анализа, обобщения и систематизации научной информации в области физики квантовых и оптических технологий (В2, СПК-2).

ВЛАДЕТЬ: навыками анализа методологических проблем, возникающих при планировании, организации и решении конкретных исследовательских задач в области физики квантовых и оптических технологий (ВЗ, СПК-3).

УМЕТЬ: анализировать альтернативные варианты решения исследовательских задач в области физики квантовых и оптических технологий и оценивать потенциальные выигрыши/проигрыши реализации этих вариантов (У1, СПК-1).

УМЕТЬ: осуществлять поиск, критический анализ, обобщать и систематизировать научную информацию в области физики квантовых и оптических технологий (У2, СПК-2).

УМЕТЬ: организовывать и планировать исследования, ставить конкретные задачи научных исследований в области физики квантовых и оптических технологий, и решать их с помощью современной аппаратуры и оборудования (У3, СПК-3).

ЗНАТЬ: методы анализа и оценки современных научных достижений, а также методы генерирования новой физической информации при решении исследовательских и практических задач в области физики квантовых и оптических технологий (31, СПК-1).

ЗНАТЬ: способы критического анализа и систематизации научной информации при решении исследовательских задач в области физики квантовых и оптических технологий (32, СПК-2).

ЗНАТЬ: методы организации и планирования исследований в области физики квантовых и оптических технологий, включая способы решения задач с помощью современной аппаратуры и оборудования (33, СПК-3).

Планируемые		Критерии оценивания результатов обучения						
результаты обучения (показатели достижения заданного уровня освоения компетенций)		2	3	4	5			
ВЛАДЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-			
профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых и		анализа и синтеза физической информации в области	применение навыков анализа и синтеза физической информации	пробелы применение навыков анализа и синтеза	тическое применение навыков анализа и синтеза физической информации в области физики квантовых и оптических технологий			

оптических технологий		оптических	квантовых и оптических	и оптических технологий	
(В1, СПК-1).		технологий	технологий		
ВЛАДЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
навыками поиска, критического анализа, обобщения и систематизации научной информации в области физики квантовых и оптических технологий (В2, СПК-2).	навыков	анализа, обобщения и систематизации	применение навыков поиска, критического анализа, обобщения и систематизации научной информации в области физики квантовых и	содержащее отдельные пробелы применение навыков поиска, критического анализа, обобщения и систематизации научной информации в области физики квантовых и оптических технологий	тическое применение навыков поиска, критического анализа, обобщения и систематизации научной информации в области физики квантовых и оптических технологий
ВЛАДЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
навыками анализа методологических проблем, возникающих при планировании, организации и решении конкретных исследовательских задач в области физики квантовых и оптических технологий (ВЗ, СПК-3).	навыков	применение навыков анализа методологических проблем, возникающих при планировании, организации и решении конкретных исследовательских задач в области физики квантовых и оптических технологий	систематическое применение навыков анализа методологических проблем, возникающих при планировании, организации и решении конкретных исследовательских задач	содержащее отдельные пробелы применение навыков анализа методологических проблем, возникающих при планировании, организации и решении конкретных	тическое применение навыков анализа методологических проблем, возникающих при планировании,

	1	1			1
УМЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
анализировать альтер-	умения	проявление умения	систематическое	содержащее отдельные	тическое проявление
нативные варианты		анализировать альтер-	проявление умения	пробелы проявление	умения анализировать
решения исследова-		нативные варианты	анализировать аль-	умения анализировать	альтернативные варианты
тельских задач в		решения исследова-	тернативные варианты	альтернативные варианты	решения исследова-
области физики		тельских задач в	решения исследова-	решения исследовательских	тельских задач в области
квантовых и оптических		области физики	тельских задач в области	задач в области физики	физики квантовых и
технологий и оценивать		квантовых и	физики квантовых и	квантовых и оптических	оптических технологий и
потенциальные		оптических	оптических технологий	технологий и оценивать	оценивать потенциальные
выигрыши/проигрыши		технологий и	и оценивать	потенциальные	выигрыши/проигрыши
реализации этих ва-		оценивать	потенциальные	выигрыши/проигрыши	реализации этих ва-
риантов (У1, СПК-1).		потенциальные	выигрыши/проигрыши	реализации этих вариантов	риантов
		выигрыши/проигрыши	реализации этих ва-		
		реализации этих ва-	риантов		
		риантов			
УМЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
осуществлять поиск,	умения	проявление умения	систематическое	содержащее отдельные	тическое проявление
критический анализ,		осуществлять поиск,	проявление умения	пробелы проявление	умения осуществлять
обобщать и		критический анализ,	осуществлять поиск,	умения осуществлять	поиск, критический
систематизировать		обобщать и	критический анализ,	поиск, критический анализ,	анализ, обобщать и
научную информацию в		систематизировать	обобщать и	обобщать и	систематизировать
области физики		научную информацию	систематизировать	систематизировать научную	научную информацию в
квантовых и оптических		в области физики	научную информацию в	информацию в области	области физики квантовых
технологий (У2, СПК-		квантовых и	области физики	физики квантовых и	и оптических технологий
2).		оптических	квантовых и оптических	оптических технологий	
2).		технологий	технологий		

УМЕТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
организовывать и	умения	проявление умения	систематическое	содержащее отдельные	тическое проявление
планировать иссле-		организовывать и	проявление умения	пробелы проявление	организовывать и
дования, ставить		планировать иссле-	организовывать и	умения организовывать и	планировать иссле-
конкретные задачи		дования, ставить	планировать иссле-	планировать исследования,	дования, ставить
научных исследований		конкретные задачи	дования, ставить	ставить конкретные задачи	конкретные задачи
в области физики		научных исследова-	*	_	научных исследований в
квантовых и оптических		ний в области физики	-	области физики квантовых	области физики квантовых
технологий, и решать		квантовых и	области физики	и оптических технологий, и	и оптических технологий,
их с помощью		оптических	квантовых и оптических	решать их с помощью	и решать их с помощью
современной аппа-		технологий, и решать	технологий, и решать их	современной аппаратуры и	современной аппаратуры
ратуры и оборудования		их с помощью	с помощью современной	оборудования	и оборудования
(У3, СПК-3)		современной аппа-	аппаратуры и		
		ратуры и оборудова-	оборудования		
		ния			
ЗНАТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
методы анализа и	знаний	проявление знаний	систематическое	содержащее отдельные	тическое проявление
оценки современных		методов анализа и	проявление знаний	пробелы проявление знаний	знаний методов анализа и
научных достижений, а		оценки современных	методов анализа и	методов анализа и оценки	оценки современных
также методы		научных достижений,	оценки современных	современных научных	научных достижений, а
генерирования новой		а также методов	научных достижений, а	достижений, а также	также методов генериро-
физической инфор-		генерирования новой	также методов		вания новой физической
мации при решении		физической инфор-	генерирования новой	новой физической инфор-	информации при решении
исследовательских и		мации при решении	физической информации	мации при решении	исследовательских и
практических задач в		исследовательских и	при решении		практических задач в
области физики		практических задач в	исследовательских и	-	области физики квантовых
квантовых и оптических		области физики	практических задач в	области физики квантовых	и оптических технологий
технологий (31, СПК-1)		квантовых и	области физики	и оптических технологий	
		оптических	квантовых и оптических		

		технологий	технологий		
ЗНАТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
способы критического	знаний	1		содержащее отдельные пробелы проявление знаний	тическое проявление
анализа и системати- зации научной		_	=	=	критического анализа и
информации при		1			систематизации научной
решении исследова- тельских задач в			информации при	решении исследовательских	
области физики		тельских задач в области физики	решении исследова- тельских задач в области		области физики квантовых и оптических технологий
квантовых и оптических технологий (32, СПК-2).		квантовых и	физики квантовых и оптических технологий	технологий	
		технологий			

ЗНАТЬ:	Отсутствие	Фрагментарное	В целом успешное, но не	В целом успешное, но	Успешное и система-
методы организации и	знаний	проявление знаний	систематическое	содержащее отдельные	тическое проявление
планирования		методов организации	проявление знаний	пробелы проявление знаний	знаний методов
исследований в области		и планирования	методов организации и	методов организации и	организации и
физики квантовых и		исследований в	планирования	планирования	планирования
оптических технологий,		области физики	исследований в области	исследований в области	исследований в области
включая способы		квантовых и	физики квантовых и	физики квантовых и	физики квантовых и
решения задач с		оптических	оптических технологий,	оптических технологий,	оптических технологий,
помощью современной		технологий, включая	включая способы	включая способы решения	включая способы решения
аппаратуры и		способы решения	решения задач с	задач с помощью	задач с помощью
оборудования (33, СПК-		задач с помощью	помощью современной	современной аппаратуры и	современной аппаратуры
3)		современной	аппаратуры и	оборудования	и оборудования
		аппаратуры и	оборудования		
		оборудования			

10. Перечень основной и дополнительной учебной литературы

Основная литература

- 1. А.К.Звездин, В.А.Котов. Магнитооптика тонких пленок. Наука. 1988.
- 2. Г.С.Кринчик. Физика магнитных явлений. Изд-во МГУ. 1985
- 3. Л.Д.Ландау, Е.М.Лифшиц. Электродинамика сплошных сред. Наука 1992.
- 4. A.K. Zvezdin, V.A. Kotov. Modern magnetooptical and magnetooptical materials. IOP Publishing Ltd 1997.

Дополнительная литература

- 5. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824.
- 6. Raether, H. Surace plasmons on smooth and rough surfaces and on gratings; Springer, 1988.
- 7. Temnov, V. V. Ultrafast acousto-magneto-plasmonics. Nature Photon. 2012, 6, 872.
- 8. Barsukova, M. G.; Shorokhov, A. S.; Musorin, A. I.; Neshev, D. N.; Kivshar, Y. S.; Fedyanin, A. A. Magneto-Optical Response Enhanced by Mie Resonances in Nanoantennas. ACS Photonics 2017, 4, 2390–2395.
- 9. Grunin, A. A.; Mukha, I. R.; Chetvertukhin, A. V.; Fedyanin, A. A. Refractive index sensor based on magnetoplasmonic crystals. J. Magn. Magn. Mater. 2016, 415, 72 –76.

- 10. Martín-Becerra, D.; González-Díaz, J. B.; Temnov, V. V.; Cebollada, A.; Armelles, G.; Thomay, T.; Leitenstorfer, A.; Bratschitsch, R.; García-Martín, A.; González, M. U. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Appl. Phys. Lett. 2010, 97, 183114.
- 11. Belotelov, V. I.; Akimov, I. A.; Pohl, M.; Kotov, V. A.; Kasture, S.; Vengurlekar, A. S.; Gopal, A. V.; Yakovlev, D. R.; Zvezdin, A. K.; Bayer,
- M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 2011, 6, 370–376.11. A. Couairon, A.Mysyrowicz.
- 12. Floess, D.; Hentschel, M.; Weiss, T.; Habermeier, H.-U.; Jiao, J.; Tikhodeev, S. G.; Giessen, H. Plasmonic Analog of Electromagnetically Induced Absorption Leads to Giant Thin Film Faraday Rotation of 14°. Phys. Rev. X 2017, 7, 021048.
- 13. C.F. Bohren, D.R. Huffman, "Absorption and Scattering of Light by Small Particle" Wiley Science Paperback Series 1983.
- 14. A. Kirilyuk, A.V. Kimel, T. Raising "Ultrafast optical manipulation of magnetic order" Rev. Mod. Phys. 82, 2731
- 15. https://www.hindsinstruments.com

11. Перечень ресурсов Интернет необходимых для освоения дисциплины:

• http://juser.fz-juelich.de/record/135891?ln=en

12. Методические указания для обучающихся по освоению дисциплины

Для освоения дисциплины необходимо посещение интерактивных занятий (лекций и семинаров) и регулярная самостоятельная работа в течение семестра. Для большей части тем курса имеются электронные презентации, выложенные на сайте ЦКТ ФФ МГУ. Рекомендуется перед лекцией скачать соответствующую презентацию и иметь ее на интерактивном занятии на ноутбуке или планшете в режиме off-line или в распечатанном виде, используя как основу конспекта для собственных пометок и комментариев.

13. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

При реализации учебной работы в рамках дисциплины «Магнитооптика тонких плёнок и наноструктур» используются средства дистанционного сопровождения учебного процесса в форме сайтов с материалами лекций и семинарских занятий. Курс имеет электронные версии (презентации) лекций. Лекции читаются с использованием современных мультимедийных возможностей и проекционного оборудования.

14. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

В соответствии с требованиями п. 5.3. образовательного стандарта МГУ по направлению подготовки «Физика». Любая аудитория, оснащенная проекционным оборудованием с возможностью подключения к ноутбуку, экраном, и учебной доской.