Architecture agnostic algorithm for reconfigurable optical interferometer programming

Authors
Sergei Kuzmin, Ivan Dyakonov, and Sergei Kulik

Optics Express, 29, 23, 38429-38440 (2021)

Abstract
We develop the learning algorithm to build an architecture agnostic model of a reconfigurable optical interferometer. A procedure of programming a unitary transformation of optical modes of an interferometer either follows an analytical expression yielding a unitary matrix given a set of phase shifts or requires an optimization routine if an analytic decomposition does not exist. Our algorithm adopts a supervised learning strategy which matches a model of an interferometer to a training set populated by samples produced by a device under study. A simple optimization routine uses the trained model to output phase shifts corresponding to a desired unitary transformation of the interferometer with a given architecture. Our result provides the recipe for efficient tuning of interferometers even without rigorous analytical description which opens opportunity to explore new architectures of the interferometric circuits.