Задачи и алгоритмы квантовых вычислений: Сейсмика

Картинка
С. Страупе, М. Сайгин, К. Эпов — Задачи и алгоритмы квантовых вычислений: Сейсмика
Семинар Центра квантовых технологий
Докладчик(и)
С. Страупе, М. Сайгин, К. Эпов
Аффилиация
МГУ имени М. В. Ломоносова
Дата и время проведения
Место проведения
Малый конференц-зал ЦКП
Аннотация

Центр Квантовых технологий начинает цикл семинаров, посвященный практически значимым задачам и алгоритмам квантовых вычислений.

Первый семинар будет посвящен сейсмике, обратной акустической задаче рассеяния. Мы обсудим текущее состояние и перспективы развития двух квантовых вычислительных платформ, разрабатываемых в ЦКТ МГУ: квантового компьютера на одиночных атомах в ловушках и линейно-оптического квантового компьютера. Кратко остановимся на достигнутых результатах и планах развития аппаратных платформ в ближайшем будущем.

После этого поговорим об основных квантовых алгоритмах, реализация которых представляется перспективной для решения практически значимых задач. Кратко расскажем о некоторых таких алгоритмах, которые были предложены во время зарождения теоретической области квантовой информации, но которые крайне требовательны к масштабу и качеству квантовых вычислителей. Затем уделим особое внимание алгоритмам, которые предложены в последние годы для реализации на неидеальных современных вычислителях среднего масштаба. Обсудим особенности алгоритмов, связанные с адаптацией под атомные и оптические платформы.

Затем мы перейдем к обсуждению задачи сейсмической инверсии. Рассмотрим, как регистрируются сейсмические данные, сформулируем прямую и обратную задачу сейсморазведки. Обсудим некорректность задачи сейсмической инверсии, необходимость привлечения априорной информации, поставим задачу инверсии в общем виде, опишем модель среды, рассмотрим детерминистические и стохастические подходы к решению. Наконец, мы сформулируем задачу в рамках одномерного акустического приближения малых коэффициентов отражения и рассмотрим тестовый пример для реализации на квантовом компьютере.

Язык доклада
Русский
Файл презентации