Основным направлением деятельности Центра квантовых технологий в области науки является исследование методов экспериментального контроля над квантовыми системами. Сотрудники центра занимаются разработкой прототипов квантовых устройств для секретной передачи информации и реализации алгоритмов квантовых вычислений. Также в центре проводятся исследования по разработке нанофотонных и одноатомных одноэлектронных устройств.


Effect of pyrolysis on microstructures made of various photoresists by two-photon polymerization: comparative study

M. I. Sharipova, T. G. Baluyan, K. A. Abrashitova, G. E. Kulagin, A. K. Petrov, A. S. Chizhov, T. B. Shatalova, D. Chubich, D. A. Kolymagin, A. G. Vitukhnovsky, V. O. Bessonov, and A. A. Fedyanin

Optical Materials Express, 11, 371-384 (2022)

Two-photon laser polymerization (TPP) is a state-of-the-art technology that allows for the submicron-resolution printing of freeform 3D objects to be harnessed in various applications, including physics, biology, medicine, and materials science. The TPP is based on using photosensitive polymeric materials that impose restrictions on the minimum feature size and limit the functionality of printed structures within the capabilities of polymers. One of the promising yet insufficiently studied methods for overcoming these limitations is pyrolysis–high-temperature annealing of polymer objects in an inert atmosphere. It may allow both to decrease the size of the objects and modify their chemical composition. Here, we compare the effect of pyrolysis on solid objects being tens of micrometers in size printed by TPP from three commercially available photoresists: IP-Dip, OrmoComp, and SZ2080. For the annealing temperatures of 450°C and 690°C in an argon atmosphere, we assessed the changes in size, chemical composition, and adhesion to the silicon wafer substrate. Our data may be promising for developing pyrolysis as a standard post-processing method for structures created via TPP technology.

Single-walled carbon nanotube membranes as non-reflective substrates for nanophotonic applications

Denis M Zhigunov, Daniil A Shilkin, Natalia G Kokareva, Vladimir O Bessonov, Sergey A Dyakov, Dmitry A Chermoshentsev, Aram A Mkrtchyan, Yury G Gladush, Andrey A Fedyanin and Albert G Nasibulin

IOP Science "Nanotechnology", 32, 095206 (2021)

We demonstrate that single-walled carbon nanotube (SWCNT) membranes can be successfully utilized as nanometer-thick substrates for enhanced visualization and facilitated study of individual nanoparticles. As model objects, we transfer optically resonant 200 nm silicon nanoparticles onto pristine and ethanol-densified SWCNT membranes by the femtosecond laser printing method. We image nanoparticles by scanning electron and bright-field optical microscopy, and characterize by linear and Raman scattering spectroscopy. The use of a pristine SWCNT membrane allows to achieve an order-of-magnitude enhancement of the optical contrast of the nanoparticle bright field image over the results shown in the case of the glass substrate use. The observed optical contrast enhancement is in agreement with the spectrophotometric measurements showing an extremely low specular reflectance of the pristine membrane (≤0.1%). Owing to the high transparency, negligibly small reflectance and thickness, SWCNT membranes offer a variety of perspective applications in nanophotonics, bioimaging and synchrotron radiation studies.

Experimental Estimation of Quantum State Properties from Classical Shadows

G.I. Struchalin, Ya. A. Zagorovskii, E.V. Kovlakov, S.S. Straupe, and S.P. Kulik

PRX Quantum, 2, 010307 (2021)

Bi-SQUID: Design for Applications

Kornev Victor K., Kolotinskiy Nikolay V., Mukhanov Oleg A.

Superconductor Science and Technology, 33, 113001 (2020)

A review of the theory of bi-SQUIDs and the experimental studies of bi-SQUID-based devices is presented. The reported output voltage linearity of the fabricated devices ($\sim{}$40 to 45 dB) is much higher than that observed for dc SQUIDs ($\sim{}$20 dB). Recent numerical simulation evidence indicates that the linearity can be further improved to at least 60 to 70 dB. Results from a wide, multi-parameter optimization analysis are considered in the form of parameter domains for the voltage-response linearity. Thermal–noise influence, load impact and interfacing requirements are examined. Potential applications of the devices are discussed.
Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals

A. Yu. Frolov, M. R. Shcherbakov and A. A. Fedyanin

Physical Review B, 101, 045409 (2020)